GEOTECHNICAL ENGINEERING INVESTIGATION Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68 Gibson and Warrick Counties, Indiana INDOT Project No. IM-069-0 (004) INDOT Des. No. 0500436 ATC Project No. 86.00481.0181

Prepared For:

American Structurepoint, Inc. 7260 Shadeland Station Indianapolis, Indiana 46256-3917

Attention: Mr. Kevin G. Jasinski, P.E.

April 13, 2007

April 13, 2007

American Structurepoint, Inc. 7260 Shadeland Station Indianapolis, Indiana 46256-3917

Attn: Mr. Kevin G. Jasinski, P.E.

Re: Geotechnical Engineering Investigation

Proposed Interstate 69 Design/Build Project

Interstate 64 to State Route 68

Gibson and Warrick Counties, Indiana INDOT Project No. IM-069-0 (004)

INDOT Des. No. 0500436 ATC Project No. 86.00481.0181

Dear Mr. Jasinski:

Submitted herewith is the report of our geotechnical engineering investigation for the referenced project. This study was authorized in accordance with our Proposal-Agreement No. PE-06-0183 (Revised) dated November 27, 2006.

This report contains the results of our field and laboratory testing program, which is in general accordance with current INDOT standards, an engineering interpretation of this data with respect to the available project characteristics and recommendations to aid in the design and construction of the earth-connected phases of this project.

We appreciate the opportunity to be of service to you on this project. If we can be of any further assistance, or if you have any questions regarding this report, please do not hesitate to contact either of the undersigned.

Sincerely,

ATC Associates Inc.

Shawn M. Marcum, P.E.

Senior Project Engineer

MAMES STAR NO. 21494
STATE OF

MOIANIA

Thomas J. Struewing, P.E.

Principal Engineer

Copies: (3) American Structurepoint, Inc.; Attn: Mr. Kevin G. Jasinski, P.E.

(10) INDOT Office of Geotechnical Engineering; Attn: Mr. Athar A. Kahn, P.E.

SUMMARY OF GEOTECHNICAL ENGINEERING INVESTIGATION

Proposed Interstate 69 Design/Build Project

Interstate 64 to State Route 68 Gibson and Warrick Counties, Indiana INDOT Project No. IM-069-0 (004) INDOT Des. No. 0500436 ATC Project No. 86.00481.0181

The following information is a brief summary of the findings and recommendations that are presented in detail in the report for this project and is solely for the purpose of overview. The report should be read in its entirety prior to implementation of the design and construction recommendations for this project. The Executive Summary omits many details, any of which could be crucial to the proper implementation of the recommendations, and the information contained in the Executive Summary should not be used for design and construction of this project.

GENERAL INFORMATION

Plans are being developed by American Structurepoint, Inc. for the construction of a new section of Interstate 69 in Gibson and Warrick Counties, Indiana. The proposed project will begin at Station 1502+42 Line "A", which is at the existing interchange of Interstate 64 and Interstate 164, and will end at Station 1593+65 Line "A", which is just north of State Road 68. The project will also include the realignment of approximately 2,900 ft of State Road 57 and 2,470 ft of Nobles Chapel Road and the construction of ramps from Interstate 69 to and from Interstate 64 and State Road 68. A two-span bridge will be constructed to carry the new alignment of Nobles Chapel Road over Interstate 69 and a new three-span bridge will be constructed to carry State Road 68 over Interstate 69. Mechanically stabilized earth walls will be used to provide grade separation at the end bents of the Nobles Chapel Road Bridge over Interstate 69. Three three-sided, pre-cast concrete culvert structures will be installed for stream crossings (two for the mainline of Interstate 69 and one for the ramp from northbound Interstate 69 to State Road 68). Pre-cast concrete culverts will also be constructed for stream crossings for the westbound Interstate 64 ramp to northbound Interstate 69 and for the on-ramp from State Road 68 to southbound Interstate 69.

PROPOSED BRIDGE STRUCTURES

Considering the project characteristics and the subsurface conditions encountered in the test borings that were drilled at the proposed bridge locations, it is recommended that deep foundations (steel H-piles) be used to support the proposed end bents for Bridge Structure No. 1 (Nobles Chapel Road over Interstate 69). Alternatively, since the leveling pad for the MSE walls for the end bents for this structure will be at or below El 442, it may be desirable to support the end bents of this bridge on spread footings that bear on competent bedrock. It is recommended that deep foundations (steel H-piles) be used to support the proposed end bents and interior piers for Bridge Structure No. 4 (State Road 68 over Interstate 69). Recommendations for use in design of 70 ton and 100 ton piles as well as spread footings have been developed and are included in the associated bridge sections.

PROPOSED PRE-CAST, THREE-SIDED CONCRETE CULVERT STRUCTURES

Five stream crossing structures are currently planned to be pre-cast, three-sided, reinforced concrete culverts. Specific design recommendations for spread footings bearing on bedrock and in the natural cohesive soils are presented in the associated sections.

PROPOSED RETAINING WALLS

There are two locations where mechanically stabilized earth (MSE) retaining walls are proposed for this project, one for each bridge abutment of Bridge Structure No. 1 (Nobles Chapel Road over Interstate 69). It is assumed that the MSE walls will bear at or below about El 442. The MSE wall will vary in height from about 42 ft at Bent No. 1 to about 32 ft at Bent No. 3. It will be necessary to undercut all soils to expose competent bedrock beneath the entire MSE wall section at both end bent locations of Structure No. 1. Our calculations indicate that an allowable bearing pressure of 7,000 lbs/sq.ft (based on a factor of safety of 2.5 for static conditions) can be used for the design of the MSE walls that are planned at the end bents for Bridge Structure No. 1 provided that the MSE walls bear directly on competent bedrock, or on structure backfill or lean concrete that is placed on competent bedrock. Based upon our calculations, it will be necessary to use a reinforcement length that is at least 0.7 times the height of the wall (i.e., L/H = 0.7).

EMBANKMENTS

The project is currently designed with cut slopes and conventional earth embankments with sideslopes that are 3 (horizontal) to 1 (vertical), or flatter. The proposed embankment cross-sections at Station 244+50 Line "D", Station 248+00 Line "D", Station 17+00 Ramp "C" and Station 20+00 Ramp "D" were analyzed to determined the estimated factors of safety relative to slope stability for end-of-construction, long-term and earthquake conditions. Based upon the results of the slope stability analyses performed, it is recommended that the sideslopes of the new embankments be 3 (horizontal) to 1 (vertical), or flatter. However, due to a zone of very soft clay in conjunction with the proposed embankment height between about Station 241+00 to 244+75 on Line D (i.e., the west approach embankment for the State Road 68 bridge over Interstate 69), special measures will be required to modify or improve the subgrade soils in this zone in order to assure suitable factors of safety relative to global stability and also to limit and accelerate settlement of the embankment. Based on settlement calculations for the cross-section near Station 244+30, approximately 11 in. of settlement would be expected to occur due to the weight of the embankment fill, if modification of the foundation soils was not performed. It is our opinion, based on the properties of the soils underlying the proposed embankment, that rammed aggregate piers (such as "Geopiers" or "Vibro Piers", or equivalent systems) should be installed to modify and improve the natural soils so that suitable factors of safety relative to slope stability are assured and that settlement is limited.

HIGH MAST LIGHT RECOMMENDATIONS

Lateral foundation analyses were performed using the computer program LPILE Plus 3.0 for selected representative high mast light tower locations based on the INDOT standard high mast light drilled shaft foundation. The analyses indicate that all of the proposed high mast lights can be supported on the INDOT standard foundation, except for the towers designated herein as TL-20 and TL-21, which our analyses indicate should extend to bear on bedrock at depths of 25 ft and 35 ft, respectively. The analyses indicate that the lateral deflection at the top of the drilled shaft foundations will not exceed about 1 in. under the assumed loading conditions.

ROADWAY RECOMMENDATIONS

Based on the general consistency of the soils that were encountered in the test borings and our experience on other projects with similar soil conditions, it is anticipated that significant subgrade problems may be encountered in much of the pavement areas that are in cut or at-grade sections. It is suggested that an undistributed quantity of chemical modification be included in the contract to be used where determined to be necessary to provide a suitable foundation for the pavement. Based upon the soil types that were encountered in the test borings, the currently planned cross-sections and the expected schedule for this project, it is possible that approximately 75 percent of the subgrade could require chemical modification.

It is recommended that Type IA Subgrade Treatment in accordance with INDOT Standard Specifications Section 207.04 be used for the Interstate 69 mainline and ramps, State Road 68 and State Road 57 pavement subgrade in conjunction with a resilient modulus value of 6,000 lbs/sq.in. It is recommended that Type III Subgrade Treatment be used for the realignment of Nobles Chapel Road, Old Nobles Chapel Road, Old State Road 57 and the local access road in conjunction with a resilient modulus value of 3,300 lbs/sq.in.

Adequate drainage should be provided at the site to minimize any increase in moisture content of the subgrade soils. Adequate drainage should be provided at the site with outlets at regular intervals to minimize any increase in moisture content of the subgrade soils. Subsurface drains are recommended for this project. Filter fabric will be needed due to the silty nature of the subgrade soils. The drainage ditches should be cut prior to any other construction work beginning on this project. This will help to reduce the moisture within the subgrade soils, which are inherently wet.

Report Prepared By: Shawn M. Marcum, P.E. Project Engineer Report Reviewed By: Thomas J. Struewing, P.E. Principal Engineer

TABLE OF CONTENTS

			age
1.0 2.0		RODUCTION	
		RPOSE AND SCOPE OF WORK	
	.1	Field Investigation	
_	.1	Laboratory Investigation	
4.0		ENERAL SITE CONDITIONS	
	.1	Regional and Site Geology	
	.2	Subsurface Conditions	
-	.3	Ground Water Conditions	
	.4	Seismic Consideration	_
-		IGN RECOMMENDATIONS	
	.1	Bridge Structure Foundations	
3	5.1.	<u> </u>	
	5.1.2		
5	.2	Pre-Cast, Three-Sided, Concrete Culvert Foundations	
	5.2.		
	5.2.2		
	5.2.3	3 Structure No. 5	- 21
	5.2.4		" 23
	5.2.5		
5	.3	Mechanically Stabilized Earth Retaining Walls	
5	.4	Embankments and Cut Slopes	
5	.5	High-Mast Light Towers	
5	.6	Pavements	
5	.7	Pavement Drainage	- 42
5	.8	pH Values	- 42
6.0	GE	NERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS	- 43
6	.1	Pile Installation	
6	.2	Spread Footing Excavations	
6	.3	Site Preparation and Earthwork	
6	.4	Placement and Compaction of Engineered Fill	
_	.5	Fill Sections	
6	.6	Erosion Protection	
6	.7	Construction Dewatering	- 49

APPENDICES A-J

GEOTECHNICAL ENGINEERING INVESTIGATION

Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68 Gibson and Warrick Counties, Indiana INDOT Project No. IM-069-0 (004) INDOT Des. No. 0500436 ATC Project No. 86.00481.0181

1.0 INTRODUCTION

This report presents the results of our geotechnical engineering investigation for the proposed roadway and bridge construction for a new section of Interstate 69 from Interstate 64 to State Road 68 in Gibson and Warrick Counties, Indiana (see Figure 1 in Appendix A). The proposed roadway alignment is shown on the Vicinity Map (see Figure 2 in Appendix A).

This investigation was performed to characterize and evaluate the suitability of the soils beneath the project site surface and to develop recommendations relative to pavement design, roadway subgrade treatment, support of the proposed fill sections and bridge foundations. The investigation consisted of an exploratory drilling and sampling program, laboratory testing of soil samples obtained from the test boring locations, engineering analyses and preparation of this report.

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties either express or implied. This company is not responsible for the independent conclusions, opinions or recommendations made by others based on the field exploration and laboratory test data presented in this report.

2.0 PROJECT DESCRIPTION

Plans are being developed by American Structurepoint, Inc. for the construction of a new section of Interstate 69 in Gibson and Warrick Counties, Indiana. The proposed project will begin at Station 1502+42 Line "A", which is at the existing interchange of Interstate 64 and Interstate 164, and will end at Station 1593+65 Line "A", which is just north of State Road 68. The project will also include the realignment of approximately 2,900 ft of State Road 57 and 2,470 ft of Nobles Chapel Road and the construction of ramps from Interstate 69 to and from Interstate 64 and State Road 68. A two-span bridge will be constructed to carry the new alignment of Nobles Chapel Road over Interstate 69 and a new three-span bridge will be constructed to carry State Road 68 over Interstate 69. Mechanically stabilized earth walls will be used to provide grade separation at the end bents of the Nobles Chapel Road Bridge over Interstate 69. Three three-sided, pre-cast concrete culvert structures will be installed for stream crossings (two for the mainline of Interstate 69 and one for the ramp from northbound Interstate 69 to State Road 68). Precast concrete culverts will also be constructed for stream crossings for the westbound Interstate 64 ramp to northbound Interstate 69 and for the on-ramp from State Road 68 to southbound Interstate 69.

The following tables summarize the proposed roadway sections and the proposed bridge structures as currently planned:

SUMMMARY OF ROADWAY SEGMENTS

Roadway	Line	Begin Station	End Station	Length, ft
Interstate 69	A	1502+42	1593+65	9,123
State Road 68	D	230+70	262+60	3,190
State Road 57	PR-C	88+16	117+00	2,884
Old State Road 57	S-2-C	44+34	50+00	566
Nobles Chapel Road	S-2-A-PR	19+67	45+32	2,565
Old Nobles Chapel Road	T-1-A	19+66	23+00	334
Ramp - Interstate 64 Westbound to Interstate 69 Northbound	A-1	10+00	25+86	1,586
Ramp - Interstate 69 Southbound to Interstate 64 Westbound	B-1	14+00	29+45	1,545
Local Access Road off of State Road 68	LSR3	1+75	10+89	914
Ramp - State Road 68 to Interstate 69 Northbound	Ramp A	1+12	19+76	1,864
Ramp - Interstate 69 Northbound to State Road 68	Ramp B	5+01	22+11	1,710
Ramp - State Road 68 to Interstate 69 Southbound	Ramp C	1+12	19+92	1,880
Ramp - Interstate 69 Southbound to State Road 68	Ramp D	5+00	22+41	1,741

SUMMMARY OF BRIDGE STRUCTURES

Structure No.	Roadway	Location	Type of Structure
1	Nobles Chapel Road	Station 37+63 Line S-2-A-PR	Two-Span Bridge
2	Interstate 69	Station 1561+83 Line A	Three-sided pre-cast concrete culvert
3	Interstate 69	Station 1590+11 Line A	Three-sided pre-cast concrete culvert
4	State Road 68	Station 246+64 Line D	Three-span bridge
5	Ramp - Interstate 69 Northbound to State Road 68	Station 16+45 Ramp B	Three-sided pre-cast concrete culvert

Most of the mainline Interstate 69 alignment will require moderate cuts, generally less than about 15 ft deep, or is near the existing grade. There will be some fill areas where the embankments will generally be less than about 8 ft high, except north of about Station 1594+00 Line "A" (just north of State Road 68), which will require up to about 12 ft of fill. Fill heights of about 15 ft, 17 ft, 10 ft and 27 ft will be needed for Ramp A, Ramp B, Ramp C and Ramp D, respectively. Ramp B will also require a 17 ft cut and Ramp C will require cuts as deep as 15 ft. The approach embankments for the Nobles Chapel Road Bridge and the State Road 68 Bridge will be as high as about 24 ft and 27 ft, respectively.

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

3.0 PURPOSE AND SCOPE OF WORK

The purpose of this study was to determine the general subsurface conditions and characteristics of the proposed roadway alignment by drilling test borings and to evaluate these with respect to roadway construction and bridge structure support for the proposed project. In addition, the site has been evaluated with respect to potential construction problems and recommendations are included that address matters of earthwork and quality control during construction.

3.1 Field Investigation

The subsurface conditions for the proposed roadway and bridge construction for Interstate 69 project were investigated by ATC Associates Inc. (ATC) during the period of January 3, 2007 to January 25, 2007. Drilling was performed with all-terrain-vehicle and truck mounted drilling equipment using hollow-stem augers to advance the boreholes. Where split-spoon samples were taken, they were obtained by using standard penetration test (SPT) procedures (American Association of State Highway and Transportation Officials - AASHTO T 206), generally at 2.5 ft and 5.0 ft intervals at the locations indicated on the Test Boring Logs. The bedrock beneath the overburden soil was cored to depths of 5.0 to 13.7 ft below the auger refusal depths in selected borings and bedrock soundings were performed at the selected bridge locations.

Subsequent to drilling activities and obtaining 24-hour water level measurements at selected locations, each test borehole was backfilled in accordance with the specifications set forth by the INDOT document "Exhibit C" and the INDOT "Aquifer Protection Guidelines".

The number, locations and depths of the borings were selected by ATC and most of the soil boring locations were staked in the field by Bernarndin Lochmueller & Associates, with the remaining boring locations staked by ATC. Bernarndin Lochmueller & Associates provided the majority of the ground surface elevations at the staked boring locations and the

Geotechnical Engineering Investigation Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

9-0 (004), INDOT Des. No. 0500436 ATC Project No. 86.00481.0181

remaining ground surface elevations were estimated from roadway plans and cross-sections

generated by American Structurepoint, Inc. The borings were drilled at the locations noted

on the Test Borings Logs in Appendix B.

Logs of all borings, which show visual descriptions of all soil strata encountered using the

AASHTO classification system, are included in Appendix B. Sampling information and

other pertinent field data and observations are also included on the boring logs. In addition,

a sheet defining the terms and symbols used on the logs and explaining the standard

penetration test (SPT) procedure is provided immediately preceding the boring logs in

Appendix B.

3.2 Laboratory Investigation

The disturbed soil samples were visually classified by an engineer. The soils were classified

in accordance with the AASHTO Soil Classification System and the visual classification

verified or modified based upon the results of laboratory tests. Final boring logs were

subsequently prepared and are included in Appendix B. Soil index property tests including

natural moisture content (AASHTO T265), grain size distribution and analyses (AASHTO

T88), Atterberg limit determinations (AASHTO T89 and T90), organic content tests

(AASHTO T267) and soil pH (AASHTO T200) were performed on representative samples.

A resilient modulus test (AASHTO T307) was performed on a representative bag sample.

Unconfined compressive strength tests (AASHTO T208) were performed on representative

split-spoon and Shelby tube samples and a consolidation test (AASHTO T216) was

performed on representative Shelby tube sample. The results of all laboratory tests are

included on the boring logs in Appendix B and/or on respective plots or summary sheets in

Appendix C and D.

ATC Associates Inc.

Page 6

4.0 GENERAL SITE CONDITIONS

4.1 Regional and Site Geology

The project site is located at the southern edge of the Indiana physiographic unit known as the Wabash Lowlands near the border of the Booneville Hills Section of the Indiana physiographic unit known as the Southern Hills and Lowlands Region. The Wabash Lowlands is described as an area of broad terraced valleys and low till covered hills and the Booneville Hills unit is described as an area of bedrock hills of moderate relief. According to geologic mapping, the area is underlain by the lower part of the Mcleansboro Bedrock Group consisting of Pennsylvanian age shale, sandstone and limestone and it appears that the bedrock surface varies from about 0 ft to 50 ft below the existing ground surface. The overburden deposits typically consist of silty clay loam, silty clay and silt.

4.2 Subsurface Conditions

The general subsurface conditions at the site were investigated by drilling eighty-five (85) test borings (sixty-one (61) roadway borings and twenty-four (24) structure borings) to depths ranging from 10.0 to 44.2 ft below the existing ground surface and drilling seven bedrock soundings. The subsurface conditions disclosed by the field investigation are summarized in the following paragraphs. Detailed descriptions of the subsurface conditions encountered in each test boring are presented on the Test Boring Logs in Appendix B. It should be noted that the stratification lines shown on the soil boring logs represent approximate transitions between material types. In-situ stratum changes could occur gradually or at slightly different depths and variations in the soil stratigraphy and ground water levels should be expected across this site. The consistencies of the cohesive soils and the densities of the granular soils were estimated based on the results of the standard penetration test (ASTM D-1586).

Geotechnical Engineering Investigation Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

The roadway borings drilled for this project (RB-1 through RB-61) typically encountered

medium stiff to stiff silty clay loam, silty clay and silt overlying weathered shale and

sandstone bedrock. Softer zones were encountered throughout the site. An area of very

moist, very soft silt was encountered in Borings Nos. RB-57, RB-58, RB-59 and RB-60,

which are located north of State Road 68 and extends to depths varying from about 3.5 ft

to 6.0 ft below the existing ground surface. Auger refusal was encountered on bedrock in

about half of the borings and was encountered just below the ground surface in some

borings and deeper than the termination depth of 30 ft in other borings.

The structure borings drilled for this project encountered similar subsurface conditions as

described above. The bedrock surface in the structure test borings ranged from about 6.0

ft to 38.5 ft below the existing ground surface. The rock coring for the structures

revealed weathered shale, sandstone and limestone bedrock below the overburden silty

clay loam, silty clay and silt soils. Rock Quality Designations (RQD) values were

calculated based on the condition of the cored bedrock samples and ranged from about 16

to 100 percent.

4.3 Ground Water Conditions

Ground water observations were made during drilling operations (by noting the depth of

water on the drilling tools), in the open boreholes following withdrawal of the drilling

augers and at 24 hours after the completion of drilling activities. Free ground water was

noted in sixty-three (63) of the eighty-five (85) test borings drilled for this project,

however; it should be noted that the 24-hour water level readings in many of the borings

were influenced due to the introduction of water to facilitate the rock coring procedures

and the cave depth of the borehole. Ground water was encountered as shallow as about

1.0 ft and as deep as about 21.0 ft. It appears that many of the 24-hour water level

readings were affected by the wet weather conditions at the time of drilling.

ATC Associates Inc.

Geotechnical Engineering Investigation

Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

1 (004), INDO1 Des. No. 0500436 ATC Project No. 86.00481.0181

It should be noted that short term ground water level readings are not necessarily a

reliable indication of the ground water level and that fluctuations in the level of the

ground water will occur due to variations in rainfall and other factors not evident at the

time of our investigation. Water level readings were made in the drill holes at the times

and under the conditions stated on the boring logs in Appendix B.

4.4 Seismic Consideration

Based on INDOT Design Manual Section 60-3.06, the project site lies within an area

where the Acceleration Coefficient (A) is 0.10. As per Section 3 of AASHTO LRFD

Bridge Design Specifications, 3rd Edition, 2004 and the 2006 Interim Revisions, Table

3.10.4-1, the seismic performance zone for an acceleration coefficient of 0.10 would be

Seismic Zone 2. As per Section 3.10.5, it is our opinion that the subsurface materials

encountered at the project site closely resemble Type I.

5.0 DESIGN RECOMMENDATIONS

The following bridge structure, roadway, earth embankment and retaining wall design

recommendations have been developed on the basis of the previously described project

characteristics (Section 2.0) and subsurface conditions (Section 4.0). If there is any change

in these project criteria, including changes in the roadway alignments and profile grades,

changes in structure type and locations (including the bridge end bent locations) or changes

in embankment configurations or changes in seismic considerations, a review should be

made by this office.

5.1 Bridge Structure Foundations

Considering the project characteristics and the subsurface conditions encountered in the

test borings that were drilled at the proposed bridge locations, it is recommended that

deep foundations (steel H-piles) be used to support the proposed end bents for Bridge

Structure No. 1 (Nobles Chapel Road over Interstate 69). Alternatively, since the

ATC Associates Inc.

Page 9

Geotechnical Engineering Investigation

Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

leveling pad for the MSE walls for the end bents for this structure will be at or below El 442, it may be desirable to support the end bents of this bridge on spread footings that bear on competent bedrock. It appears that the bedrock surface is well above El 442 at the west end bent, however, it will likely be necessary to extend the footings well below El 442 (probably to El 430) at the east end bent location. The interior pier for Bridge Structure No. 1 can be supported on either a spread footing bearing on shale bedrock or on steel H-piles. It will likely be necessary to pre-core into the shale bedrock in order to attain the minimum 10 ft long piles as required for lateral stability since the shale bedrock will be relatively shallow below the proposed grade of the mainline Interstate 69 alignment at this location. It is recommended that deep foundations (steel H-piles) be used to support the proposed end bents and interior piers for Bridge Structure No. 4 (State Road 68 over Interstate 69). General bridge foundation recommendations that apply to both bridge structures are presented in the following paragraphs and specific design recommendations for the individual bridges are presented in the following report sections.

Based on INDOT Design Manual Section 60-3.06, the project site lies within an area where the Acceleration Coefficient (A) is 0.10. As per Section 3 of AASHTO LRFD Bridge Design Specifications, 3rd Edition, 2004 and the 2006 Interim Revisions, Table 3.10.4-1, the seismic performance zone for an acceleration coefficient of 0.10 would be Seismic Zone 2. As per Section 3.10.5, it is our opinion that the subsurface materials encountered at the project site closely resemble Type I.

All driven piles for this project shall be spaced at least 6 ft apart, center-to-center. It is recommended that a pile driver analyzer (PDA) in accordance with the INDOT Standard Specifications Section 701.06(c) be used to establish driving criteria and to verify pile capacities for the piles on this project. The actual pile tip elevations must be determined based on an evaluation of the results of the PDA initial drive, the restrike analysis and the CAPWAP analyses. Restrike of the piles should be done after 7 days. A minimum of at

Geotechnical Engineering Investigation Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

least two PDA tests should be performed for each bridge. One PDA test should be done

at one end bent and the other PDA test should be done at the farthest interior pier or the

opposite end bent

If the piles are driven prior to construction of the mechanically stabilized earth (MSE)

retaining walls, it is important that the piles be protected from damage during

construction of the MSE walls. Pile sleeves are required when piles are located inside the

reinforced soil mass. If the piles are to be driven after construction of the spill-through

slopes, it will be necessary to pre-bore through the embankment fill down to the original

ground surface at the pile locations.

All piles shall be at least 10 ft long for lateral stability. It may be necessary to pre-core at

some pile locations (such as for the Nobles Chapel Road bridge over Interstate 69) in

order for the pile lengths to be at least 10 ft long. If coring is performed to accommodate

pile placement, placing of the piles and filling of the core shall be done as per Section

701.09 (a).

The steel H-piles must be fitted with driving tips to facilitate driving the piles to proper

bearing on the bedrock. The piles should be installed and monitored in accordance with

Section 701 of the INDOT Standard Specifications.

5.1.1 Bridge Structure No. 1 (Nobles Chapel Road over Interstate 69)

The leveling pad for the MSE walls at the end bents for this structure will be at or below

El 442. It may be desirable to support the end bents on spread footings that bear on

competent bedrock. It appears that the bedrock surface is well above El 442 at the west

end bent, however, it will likely be necessary to extend the footings well below El 442

(probably to El 430) at the east end bent location. The interior pier for this two-span

bridge can be supported on a spread footing bearing on competent shale bedrock, or on

steel H-piles. We are providing two options for this structure:

ATC Associates Inc.

Page 11

OPTION 1:

For steel H-piles used for Bridge Structure No. 1 at the end bents and interior pier, we recommend that the piles should be set a minimum of 10.0 ft into competent shale due to lateral stability concerns. It will be necessary to pre-core into shale bedrock in order to attain the minimum 10 ft embedment of piles as required for lateral stability. The elevations for the bottom of the cored holes for the west end bent, the interior pier and the east end bent shall be Elevation 426.0, Elevation 418.0 and Elevation 409.0, respectively. If these recommendations are followed, PDA testing will not be required for this bridge.

OPTION 2:

If MSE walls are not constructed for the end bents and removal and replacement of soft soils is not done as per the discussion in Section 5.3, and the piles are not socketed in to competent bedrock as mentioned above, then these additional recommendations will have to be followed: As discussed in Section 5.4, significant settlement will occur due to the weight of the embankment fill at the end bents for this bridge. Therefore, if the piles are driven prior to construction of the approach embankments, or before the settlement of the approach embankments has essentially ceased, there will be down-drag on the piles. Therefore, down-drag friction has been estimated and is included in the ultimate driving loads in the table below. Also, the designer should analyze these piles for lateral stability with LPILE or COM624P. If the piles are installed subsequent to the construction of the approach embankments and the settlement of the approach embankments has essentially ceased, the ultimate driving loads can be reduced to the factored design loads (i.e., 140 tons for the 70-ton design load and 200 tons for the 100-ton design load). In this case, it will be necessary to pre-bore through the embankment down to the original ground surface, or install the piles through sleeves within the embankments, after it has been verified by instrumentation that the settlement has ceased.

The following tables summarize the estimated pile tip elevations and driving loads for the HP 12x53 piles and HP 12x74 piles for Bridge Structure No. 1 (Nobles Chapel Road over Interstate 69). The estimated H-pile tip elevations at each end bent are based upon the elevations at which auger refusal was encountered in the test borings and soundings performed at the proposed end bents of the bridge (TB-1, TB-1-S, TB-3 and TB-3-S) and are presented in the following table. Given the variation of the bedrock surface as well as variations in the weathering of the upper bedrock, it should be understood that the H-pile tip elevations stated herein are approximate and that the actual pile lengths will vary. It is expected that the piles will penetrate some of the upper, more weathered bedrock.

Estimated Pile Tip Elevations Bridge Structure No. 1 Nobles Chapel Road over Interstate 69

Allowable Pile Capacity, tons/pile	70	100
Pile Section	HP 12x53	HP 12x74
Estimated Pile Tip Elevation for Bent No. 1	436	436
Estimated Pile Tip Elevation for Bent No. 3	413	413

Loads for Pile Driving Bridge Structure No. 1 Nobles Chapel Road over Interstate 69 70 and 100 ton Piles

Design Load, tons	70	100		
Pile Section	HP 12x53	HP 12x74		
Factor of Safety	2.0	2.0		
Factored Design Load, tons	140	200		
Friction in Scour Zone, tons	N/A	N/A		
Down-drag Friction, tons	42	42		
Ultimate Driving Load, tons	182	242		
Recommended Verification Method	By PDA, INDOT Standard Specifications Section 701.06(c)*	By PDA, INDOT Standard Specifications Section 701.06(c)*		

*Restrike after 7 days

The interior pier for the two-span bridge for Nobles Chapel Road over Interstate 69 can be supported on a spread footing that bears on competent shale bedrock. Since the leveling pad for the MSE walls at the end bents for this structure will be at or below El 442, it may be desirable to support the end bents on spread footings that bear on competent bedrock. It appears that the bedrock surface is well above El 442 at the west end bent, however, it will likely be necessary to extend the footings well below El 442 (probably to El 430) at the east end bent location. Spread footings that bear at a depth of at least 2 ft into competent shale bedrock can be designed for a net allowable bearing pressure of 8,000 lbs./sq.ft. The bedrock below the footing bearing elevation should be inspected as described in Section 6.2. Any unsuitable material (such as loose or soft bedrock and any soil) identified by this inspection should be removed to expose competent bedrock and the inspection procedure repeated at the new bearing surface.

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

5.1.2 Bridge Structure No. 4 (State Road 68 over Interstate 69)

The end bents and interior piers for Bridge Structure No. 4 (State Road 68 over Interstate

69) should be supported on steel H-piles (INDOT Standard Specifications Section

915.02) driven to bearing on bedrock. Hard driving conditions should be anticipated due

to the weathered bedrock above the estimated pile tip elevations.

As discussed below in Section 5.4, significant settlement will occur due to the weight of

the embankment fill at the end bents for this bridge. Therefore, if the piles are driven

prior to construction of the approach embankments, or before the settlement of the

approach embankments has essentially ceased, there will be down-drag on the piles.

Therefore, down-drag friction has been estimated and is included in the ultimate driving

loads in the table below. If the piles are installed subsequent to the construction of the

approach embankments and the settlement of the approach embankments has essentially

ceased, the ultimate driving loads can be reduced to the factored design loads (i.e., 140

tons for the 70-ton design load and 200 tons for the 100-ton design load). In this case, it

will be necessary to pre-bore through the embankment down to the original ground

surface, or install the piles through sleeves within the embankments, after it has been

verified by instrumentation that the settlement has ceased.

The following tables summarize the estimated pile tip elevations and driving loads for the

HP 12x53 piles and HP 12x74 piles for Bridge Structure No. 4 (State Road 68 over

Interstate 69). The estimated H-pile tip elevations at each end bent and interior pier

location are based upon the elevations at which auger refusal was encountered in the test

borings and soundings performed at the proposed end bent and interior pier locations of

the bridge (TB-4, TB-4-S, TB-5, TB-5-S, TB-6, TB-6-S, TB-7 and TB-7-S) and are

presented in the following table. Given the variation of the bedrock surface as well as

variations in the weathering of the upper bedrock, it should be understood that the H-pile

ATC Associates Inc.

Page 15

tip elevations stated herein are approximate and that the actual pile lengths will vary. It is expected that the piles will penetrate some of the upper, more weathered bedrock.

Estimated Pile Tip Elevations

Bridge Structure No. 4 State Road 68 over Interstate 69

Allowable Pile Capacity, tons/pile	70	100
Pile Section	HP 12x53	HP 12x74
Estimated Pile Tip Elevation for Bent No. 1	377	377
Estimated Pile Tip Elevation for Pier No. 2	384	384
Estimated Pile Tip Elevation for Pier No. 3	390	390
Estimated Pile Tip Elevation for Bent No. 4	391	391

Loads for Pile Driving Bridge Structure No. 4 State Road 68 over Interstate 69 70 and 100 ton Piles

Design Load, tons	70	100	
Pile Section	HP 12x53	HP 12x74	
Factor of Safety	2.0	2.0	
Factored Design Load, tons	140	200	
Friction in Scour Zone, tons	N/A	N/A	
Down-drag Friction, tons	45	45	
Ultimate Driving Load, tons	185	245	
Recommended Verification Method	By PDA, INDOT Standard Specifications Section 701.06(c)*	By PDA, INDOT Standard Specifications Section 701.06(c)*	

^{*}Restrike after 7 days

5.2 Pre-Cast, Three-Sided, Concrete Culvert Foundations

Structure Nos. 2, 3 and 5 are currently planned to be pre-cast, three-sided, reinforced concrete culverts. It is recommended that spread footings be used to support Structure Nos. 2, 3 and 5. Specific design recommendations for spread footings are presented in the following report sections for Structure Nos. 2, 3 and 5.

5.2.1 Structure No. 2

A new three-sided, pre-cast, reinforced concrete culvert structure will be constructed over an unnamed ditch at about Station 1561+83 Line "A". Based on the results of Boring Nos. TB-8 and TB-9, our findings show that the proposed structure can be supported on spread footings provided all soils are removed and that the footings bear on competent bedrock. Bedrock was encountered in the test borings at about El 410.

The bedrock at the base of the footing excavations should be observed to verify that all soils and loose rock are first removed and that the footings will bear on competent bedrock. It is important that positive scour protection be provided to protect the footings and the footing bearing materials from scour. The following table summarizes the recommended design properties for the pre-cast, three-sided reinforced concrete culvert structure. Calculations and design assumptions have been included in Appendix E.

Design Parameters for Pre-Cast, Three-Sided Reinforced Concrete Culvert Structure Foundations Structure No. 2

Structure Location	Borings	Assumed Bottom of Footing Elevation	Allowable Net Bearing Pressure, lbs/sq.ft*	Minimum Footing Width, ft
Station 1561+83 Line "A"	TB-8 and TB-9	410	8,000	3

^{* -} Assuming footings bear on competent shale bedrock.

Design Parameters for Three-Sided, Pre-cast Concrete Structure Wing Walls Structure No. 2

Structure Location	Allowable Net Bearing Pressure, lbs/sq.ft*	Assumed Bottom of Footing Elevation	Minimum Footing Width, ft	Angle of Internal Friction of Bearing Bedrock	Friction Factor of Bearing Bedrock	Friction Angle of Backfill Soils**	Ultimate Cohesion of Bearing Bedrock, lbs/sq.ft	Ultimate Adhesion of Bearing Bedrock, lbs/sq.ft
Station 1561+83 Line "A"	8,000	410	3	0	0.33	17°	4,000	1,000

^{* -} Assuming footings bear on competent shale bedrock.

It is extremely important that the materials at the base of the footing excavations for the pre-cast, three-sided reinforced concrete culvert structure and wing walls be carefully inspected to verify that the footings bear on competent bedrock and that all soil and loose bedrock are removed at the footing locations. Recommendations for inspection of the materials at the bases of the footings are provided in the Section 6.2.

The backfill around the three-sided pre-cast reinforced concrete culvert structure should consist of structure backfill placed and compacted in accordance with Section 211 of the INDOT Standard Specifications. When the fill reaches the top of the structure, two lifts of structure backfill should be placed over the structure before compacting. The backfill level should be maintained at or near the same level on both sides of the structure at all times and the fill on either side should not be higher than one lift thickness above the other side. Only light compaction equipment should be used until the fill is at least 2 ft above the top of the structure. The operation of compaction equipment should be in accordance with the manufacturer's specifications.

^{** -} Assuming structural fill material.

5.2.2 Structure No. 3

A new three-sided, pre-cast, reinforced concrete culvert structure will be constructed over an unnamed ditch at about Station 1590+11 Line "A". Based on the results of Boring Nos. TB-10 and TB-11, it is our opinion that the soft natural soils that were encountered below the anticipated bearing elevation (El 399) are not suitable to support the structure without the risk of unacceptable differential settlement along the structure. The proposed structure can be supported on spread footings provided all soils are first removed to expose competent bedrock and that the footing bearing elevation is reestablished with flowable backfill in accordance with INDOT Standard Specifications Section 213.

The bedrock at the base of the undercut footing excavations should be observed to verify that all soils and loose rock are first removed. The undercut excavation should then be backfilled with flowable backfill in accordance with INDOT Standard Specifications Section 213. It is important that positive scour protection be provided to protect the footings and the footing bearing materials from scour. The following table summarizes the recommended design properties for the pre-cast, three-sided reinforced concrete culvert structure. Calculations and design assumptions have been included in Appendix E.

Design Parameters for Pre-Cast, Three-Sided Reinforced Concrete Culvert Structure Foundations Structure No. 3

Structure Location	Borings	Assumed Bottom of Footing Elevation	Allowable Net Bearing Pressure, lbs/sq.ft*	Minimum Footing Width, ft
Station 1590+11, Line "A"	TB-10 and TB- 11	399	5,000	3

^{* -} Assuming flowable backfill material is placed over competent bedrock.

Design Parameters for Three-Sided, Pre-cast Concrete Structure Wing Walls Structure No. 3

Structure Location	Allowable Net Bearing Pressure*, lbs/sq.ft	Assumed Bottom of Footing Elevation	Minimum Footing Width, ft	Angle of Internal Friction of Bearing Material*	Friction Factor of Bearing Material*	Friction Angle of Backfill Soils**	Ultimate Cohesion of Bearing Material, lbs/sq.ft	Ultimate Adhesion of Bearing Material, lbs/sq.ft*
Station 1590+11, Line "A"	5,000	401	3	0	0.33	17°	5,000	2,500

^{* -} Assuming flowable backfill material is placed over competent bedrock.

It is extremely important that the materials at the base of the footing excavations for the pre-cast, three-sided reinforced concrete culvert structure and wing walls be carefully inspected to verify that the all soils are removed to expose competent bedrock and that the footings bear on flowable backfill placed on the exposed bedrock. Recommendations for inspection of the footing excavations are provided in Section 6.2.

The backfill around the pre-cast, three-sided reinforced concrete culvert structure should consist of structure backfill placed and compacted in accordance with Section 211 of the INDOT Standard Specifications. When the fill reaches the top of the structure, two lifts of structure backfill should be placed over the structure before compacting. The backfill level should be maintained at or near the same level on both sides of the structure at all times and the fill on either side should not be higher than one lift thickness above the other side. Only light compaction equipment should be used until the fill is at least 2 ft above the top of the structure. The operation of compaction equipment should be in accordance with the manufacturer's specifications.

^{** -} Assuming structure backfill material

5.2.3 Structure No. 5

A new three-sided, pre-cast, reinforced concrete culvert structure will be constructed over an unnamed ditch at about Station 16+45 Ramp B. Based on the results of Boring Nos. TB-12 and TB-13, our findings show that the proposed structure can be supported on spread footings provided any loose or soft natural soils or soils containing concentrations of organic material are removed and replaced with compacted structure backfill.

The soils at the base of the footing excavations should be observed to verify that any unsuitable soils are first removed and replaced with structure backfill. It is important that positive scour protection be provided to protect the bearing soils from scour. The following table summarizes the recommended design properties for the pre-cast, three-sided, reinforced concrete culvert structure. Calculations and design assumptions have been included in Appendix E.

Design Parameters for Pre-cast Three-Sided Reinforced Concrete Culvert Structure Foundations Structure No. 5

Structure Location	Borings	Assumed Bottom of Footing Elevation	Allowable Net Bearing Pressure, lbs/sq.ft	Minimum Footing Width, ft
Station 16+45 Ramp B	TB-12 and TB- 13	400	2,800	3

Design Parameters for Pre-cast Three-Sided Reinforced Concrete Culvert Structure Wing Walls Structure No. 5

Structure Location	Allowable Net Bearing Pressure, lbs/sq.ft	Assumed Bottom of Footing Elevation	Minimum Footing Width, ft	Angle of Internal Friction of Bearing Soils	Friction Factor of Bearing Soils	Friction Angle of Backfill Soils*	Ultimate Cohesion of Bearing Soils, lbs/sq.ft	Ultimate Adhesion of Bearing Soils, lbs/sq.ft
Station 16+45 Ramp B	2,800	400	3	0	0.33	17°	1,500	800

^{* -} Assuming structure backfill material.

It is extremely important that the materials at the base of the footing excavations for the three-sided pre-cast reinforced concrete culvert structure and wing walls be carefully inspected to verify that suitable bearing soils exist at the design bearing elevation. Any organic material, soft natural soils or otherwise unsuitable material must be undercut and replaced with compacted structure backfill beneath the footings. Recommendations for inspection of the soils at the bases of the footings are provided in Section 6.2.

The backfill around the pre-cast, three-sided reinforced concrete culvert structure should consist of structure backfill placed and compacted in accordance with Section 211 of the INDOT Standard Specifications. When the fill reaches the top of the structure, two lifts of structure backfill should be placed over the structure before compacting. The backfill level should be maintained at or near the same level on both sides of the structure at all times and the fill on either side should not be higher than one lift thickness above the other side. Only light compaction equipment should be used until the fill is at least 2 ft above the top of the structure. The operation of compaction equipment should be in accordance with the manufacturer's specifications.

5.2.4 Three-sided, Pre-cast Concrete Culvert Structure, Station 14+05 Ramp "A-1"

A new three-sided, pre-cast, reinforced concrete culvert structure will be constructed over an existing drainage ditch at about Station 14+05 Ramp "A-1". Based on the results of Boring Nos. TB-25 and TB-26, our findings show that the proposed structure can be supported on spread footings provided all soils are removed and that the footings bear on competent bedrock. Bedrock was encountered in the test borings at about El 441 to 442.

The bedrock at the base of the footing excavations should be observed to verify that all soils and loose rock are first removed and that the footings will bear on competent bedrock. It is important that positive scour protection be provided to protect the footings and the footing bearing materials from scour. The following table summarizes the recommended design properties for the pre-cast, three-sided reinforced concrete culvert structure. Calculations and design assumptions have been included in Appendix E.

Design Parameters for Pre-Cast, Three-Sided Reinforced Concrete Culvert Structure Foundations Station 14+05 Ramp "A-1"

Structure Location	Borings	Assumed Bottom of Footing Elevation	Allowable Net Bearing Pressure, lbs/sq.ft*	Minimum Footing Width, ft
Station 14+05 Ramp "A-1"	TB-25 and TB- 26	441	8,000	3

^{*} Assuming footings bear on competent shale bedrock.

Design Parameters for Three-Sided, Pre-cast Concrete Structure Wing Walls Station 14+05 Ramp "A-1"

Structure Location	Allowable Net Bearing Pressure, lbs/sq.ft*	Assumed Bottom of Footing Elevation	Minimum Footing Width, ft	Angle of Internal Friction of Bearing Bedrock	Friction Factor of Bearing Bedrock	Friction Angle of Backfill Soils**	Ultimate Cohesion of Bearing Bedrock, lbs/sq.ft	Ultimate Adhesion of Bearing Bedrock, lbs/sq.ft
Station 14+05 Ramp "A-1"	8,000	441	3	0	0.33	17°	4,000	1,000

^{* -} Assuming footings bear on competent shale bedrock.

It is extremely important that the materials at the base of the footing excavations for the pre-cast, three-sided reinforced concrete culvert structure and wing walls be carefully inspected to verify that the footings bear on competent bedrock and that all soil and loose bedrock are removed at the footing locations. Recommendations for inspection of the materials at the bases of the footings are provided in the Section 6.2.

The backfill around the three-sided pre-cast reinforced concrete culvert structure should consist of structure backfill placed and compacted in accordance with Section 211 of the INDOT Standard Specifications. When the fill reaches the top of the structure, two lifts of structure backfill should be placed over the structure before compacting. The backfill level should be maintained at or near the same level on both sides of the structure at all times and the fill on either side should not be higher than one lift thickness above the other side. Only light compaction equipment should be used until the fill is at least 2 ft above the top of the structure. The operation of compaction equipment should be in accordance with the manufacturer's specifications.

^{** -} Assuming structure backfill material.

5.2.5 Three-sided, Pre-cast Concrete Culvert Structure, Station 8+92, Ramp "C"

A new three-sided, pre-cast, reinforced concrete culvert structure will be constructed over an unnamed ditch at about Station 8+92 Ramp C. Based on the results of Boring Nos. TB-14 and TB-15, our findings show that the proposed structure can be supported on spread footings provided any loose or soft natural soils or soils containing concentrations of organic material are removed and replaced with compacted structure backfill.

The soils at the base of the footing excavations should be observed to verify that any unsuitable soils are first removed and replaced with structure backfill. It is important that positive scour protection be provided to protect the bearing soils from scour. The following table summarizes the recommended design properties for the pre-cast, three-sided, reinforced concrete culvert structure. Calculations and design assumptions have been included in Appendix E.

Design Parameters for Pre-cast Three-Sided Reinforced Concrete Culvert Structure Foundations Station 8+92 Ramp C

Structure Location	Borings	Assumed Bottom of Footing Elevation	Allowable Net Bearing Pressure, lbs/sq.ft	Minimum Footing Width, ft
Station 8+92 Ramp C	TB-14 and TB- 15	406	1,900	3

Design Parameters for Pre-cast Three-Sided Reinforced Concrete Culvert Structure Wing Walls Structure No. 5

Structure Location	Allowable Net Bearing Pressure, lbs/sq.ft	Assumed Bottom of Footing Elevation	Minimum Footing Width, ft	Angle of Internal Friction of Bearing Soils	Friction Factor of Bearing Soils	Friction Angle of Backfill Soils*	Ultimate Cohesion of Bearing Soils, lbs/sq.ft	Ultimate Adhesion of Bearing Soils, lbs/sq.ft
Station 8+92 Ramp C	1,900	406	3	0	0.33	17°	1,000	500

^{* -} Assuming structure backfill material.

It is extremely important that the materials at the base of the footing excavations for the three-sided pre-cast reinforced concrete culvert structure and wing walls be carefully inspected to verify that suitable bearing soils exist at the design bearing elevation. Any organic material, soft natural soils or otherwise unsuitable material must be undercut and replaced with compacted structure backfill beneath the footings. Recommendations for inspection of the soils at the bases of the footings are provided in Section 6.2.

The backfill around the pre-cast, three-sided reinforced concrete culvert structure should consist of structure backfill placed and compacted in accordance with Section 211 of the INDOT Standard Specifications. When the fill reaches the top of the structure, two lifts of structure backfill should be placed over the structure before compacting. The backfill level should be maintained at or near the same level on both sides of the structure at all times and the fill on either side should not be higher than one lift thickness above the other side. Only light compaction equipment should be used until the fill is at least 2 ft above the top of the structure. The operation of compaction equipment should be in accordance with the manufacturer's specifications.

5.3 Mechanically Stabilized Earth Retaining Walls

There are two locations where mechanically stabilized earth (MSE) retaining walls are proposed for this project, one for each bridge abutment of Bridge Structure No. 1 (Nobles Chapel Road over Interstate 69). It is assumed that the MSE walls will bear at or below about El 442, which is below the bedrock surface encountered in Boring No. TB-1 drilled at Bent No. 1 and about 8 ft above the bedrock surface encountered in Boring No. TB-3 drilled at Bent No. 3. The MSE wall will vary in height from about 42 ft at Bent No. 1 to about 32 ft at Bent No. 3. While the proposed retaining walls for these structures may be constructed with a mechanically stabilized earth system, it is important that the bridge deck and girders be supported on driven steel H-pile foundations or spread footings as described in Section 5.1. The internal design of the MSE walls, which is beyond the scope of this study, depends on the nature of the soil and reinforcing material that will be used in the embankments as well as the construction procedures to be utilized. The MSE retaining wall design should include analyses pertaining to the pullout of the reinforcing elements, tensile overstress of the elements, wall/element connections and possible corrosion of the elements. It is essential that the subgrade below the retained embankments be prepared as described in this report section and that the walls be properly designed for internal stability. It will be necessary to either properly abandoned any underground utilities below or adjacent to the proposed MSE walls or to verify that the utilities can support the increase in pressure due to the weight of the MSE wall.

The MSE wall section for End Bent No. 1 of Bridge Structure No. 1 (maximum wall height of 41 ft) has been analyzed to determine that adequate factors of safety relative to sliding (FS > 1.5), overturning (FS > 2.0), global stability (FS > 1.3) and bearing capacity failure (FS > 2.5) for static conditions are satisfied and that adequate factors of safety relative to sliding (FS > 1.1), overturning (FS > 1.5), global stability (FS > 1.1) and bearing capacity failure (FS > 1.9) for earthquake conditions are satisfied. The external stability calculations are included in Appendix E. It will be necessary to undercut all soils to expose competent bedrock beneath the entire MSE wall section at both end bent

Geotechnical Engineering Investigation Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

locations of Structure No. 1. At Bent No. 3, this will require removal of at least 8 ft of

soil (or more) and replacement of the soil with structure backfill or lean concrete. If

structure backfill will be used to replace the undercut cohesive soils, the base of the

undercut excavation should be made wider by extending the excavation outward at least

4 ft in each direction. Our calculations indicate that an allowable bearing pressure of

7,000 lbs/sq.ft (based on a factor of safety of 2.5 for static conditions) can be used for the

design of the MSE walls that are planned at the end bents for Bridge Structure No. 1

provided that the MSE walls bear directly on competent bedrock, or on structure backfill

or lean concrete that is placed on competent bedrock. Based upon our calculations, it

will be necessary to use a reinforcement length that is at least 0.7 times the height of the

wall (i.e., L/H = 0.7). The calculations are based on the assumption that the top of the

leveling pad (i.e., bottom of the reinforced zone) will be located at a depth of at least 3 ft

below the final grade.

In the zones of the MSE embankments that are immediately adjacent to the bridge end

bents (in front of the end bents), reinforcing elements should be placed perpendicular to

the end bents to eliminate lateral earth pressure on the end bents. It is recommended that

the reinforced zone for the MSE walls at the end bents be the same as for the maximum

height MSE wall since these MSE walls have loading commensurate with the full

embankment height even though they extend only slightly above the level of the bottom

of the bridge end bents.

After rough grade has been established at the wall locations and prior to the placement of

fill, the exposed subgrade should be carefully inspected by probing and testing as needed.

Any soil and other unsuitable materials such as loose bedrock should be removed and

replaced with structure backfill in accordance with INDOT Standard Specification

Section 211. It is recommended that only structure backfill (angle of internal friction \geq

34° and a unit weight of approximately 125 lbs./cu.ft) according to INDOT Standard

ATC Associates Inc.

Page 28

Geotechnical Engineering Investigation

Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

O (004), INDOT Des. No. 0500436 ATC Project No. 86.00481.0181

Specifications Section 904 and INDOT recurring special provisions for MSE walls

Section 731-R-202 should be used for fill within the reinforced zone of the MSE walls.

If the piles are driven prior to construction of the mechanically stabilized earth (MSE)

retaining walls, it is important that the piles be protected from damage during

construction of the MSE walls. Pile sleeves are required when piles are located inside the

reinforced soil mass. If the piles are to be driven after construction of the spill-through

slopes, it will be necessary to pre-bore through the embankment fill down to the original

ground surface at the pile locations. Based on the bearing elevation of the MSE walls, it

may be necessary to pre-bore the bedrock in order to obtain the minimum pile length of

10 ft below the base of the MSE wall.

Care should be taken to assure that the embankment fill and reinforcing elements are

properly placed and installed. Unless otherwise specified by the MSE wall designer, the

reinforcing elements should be placed horizontally on structure backfill material that has

been compacted to INDOT Standard Specifications. Care should also be taken not to

disturb or damage the reinforcing elements during construction.

5.4 Embankments and Cut Slopes

The project is currently designed with cut slopes and conventional earth embankments

with sideslopes that are 3 (horizontal) to 1 (vertical), or flatter. The proposed

embankment cross-sections at Station 244+50 Line "D", Station 248+00 Line "D",

Station 17+00 Ramp "C" and Station 20+00 Ramp "D" were analyzed to determined the

estimated factors of safety relative to slope stability for end-of-construction, long-term

and earthquake conditions. The following tables summarize the computed factors of

safety as well as the required factors of safety for embankments and cut slopes with 3

(horizontal) to 1 (vertical) initial sideslopes based upon stability analyses using the

computer program PCSTABL6H. In the case of the cross-section at Station 244+50 Line

"D", additional slope stability analyses were performed using both flatter earth

ATC Associates Inc.

Page 29

embankment sideslopes and using a toe berm to determine if either of these methods could satisfactorily increase the calculated factors of safety relative to global stability (see Appendix G for the results of the stability analyses using PCSTABL6H).

SUMMARY OF SLOPE STABILITY ANALYSES STATION 244+50 LINE "D"

Case Analyzed	Embankment Slope Analyzed	Seismic Coefficient	Calculated Factor of Safety	Required Minimum Factor of Safety
End of Construction (Total Stress Parameters)	3 (horizontal) to 1 (vertical), 27 ft high		1.0*	1.2
Earthquake (Total Stress Parameters)	3 (horizontal) to 1 (vertical), 27 ft high	0.1	0.7*	1.1
End of Construction (Total Stress Parameters)	5 (horizontal) to 1 (vertical), 27 ft high		1.3	1.2
Earthquake (Total Stress Parameters)	5 (horizontal) to 1 (vertical), 27 ft high	0.1	0.8*	1.1
End of Construction (Total Stress Parameters)	3 (horizontal) to 1 (vertical), 27 ft high, with toe berm		1.2	1.2
Earthquake (Total Stress Parameters)	3 (horizontal) to 1 (vertical), 27 ft high, with toe berm	0.1	0.8*	1.1

^{* -} Calculated Factor of Safety is less than the required minimum Factor of Safety

SUMMARY OF SLOPE STABILITY ANALYSES STATION 248+00 LINE "D"

Case Analyzed	Embankment Slope Analyzed	Seismic Coefficient	Calculated Factor of Safety	Required Minimum Factor of Safety
End of Construction (Total Stress Parameters)	3 (horizontal) to 1 (vertical), 30 ft high		1.9	1.2
Consolidated- Drained (Effect. Stress Parameters)	3 (horizontal) to 1 (vertical), 30 ft high		2.1	1.3
Earthquake (Total Stress Parameters)	3 (horizontal) to 1 (vertical), 30 ft high	0.1	1.3	1.1

SUMMARY OF SLOPE STABILITY ANALYSES STATION 17+00 RAMP "C"

Case Analyzed	Embankment Slope Analyzed	Seismic Coefficient	Calculated Factor of Safety	Required Minimum Factor of Safety
End of Construction (Total Stress Parameters)	3 (horizontal) to 1 (vertical), 30 ft high		1.6	1.2
Consolidated- Drained (Effect. Stress Parameters)	3 (horizontal) to 1 (vertical), 30 ft high		1.4	1.3
Earthquake (Total Stress Parameters)	3 (horizontal) to 1 (vertical), 30 ft high	0.1	1.2	1.1

SUMMARY OF SLOPE STABILITY ANALYSES STATION 20+00 RAMP "D"

Case Analyzed	Embankment Slope Analyzed	Seismic Coefficient	Calculated Factor of Safety	Required Minimum Factor of Safety
End of Construction (Total Stress Parameters)	3 (horizontal) to 1 (vertical), 30 ft high		1.7	1.2
Consolidated- Drained (Effect. Stress Parameters)	3 (horizontal) to 1 (vertical), 30 ft high		1.4	1.3
Earthquake (Total Stress Parameters)	3 (horizontal) to 1 (vertical), 30 ft high	0.1	1.3	1.1

Based upon the results of the slope stability analyses performed and summarized above (see Appendix G for the results of the slope stability analyses using computer program PCSTABL6H), it is recommended that the sideslopes of the new embankments be 3 (horizontal) to 1 (vertical), or flatter. However, due to a zone of very soft clay in conjunction with the proposed embankment height between about Station 241+00 to 244+75 on Line D (i.e., the west approach embankment for the State Road 68 bridge over Interstate 69), special measures will be required to modify or improve the subgrade soils in this zone in order to assure suitable factors of safety relative to global stability and also to limit and accelerate settlement of the embankment. Based on settlement calculations for the cross-section near Station 244+30, approximately 11 in. of settlement would be expected to occur due to the weight of the embankment fill, if modification of the foundation soils was not performed. Since the estimated settlement is due to consolidation of compressible cohesive soils, it will likely take several months after completion of the embankment for the majority of the settlement to occur, if the subgrade soils are not modified.

Geotechnical Engineering Investigation

Proposed Interstate 69 Design/Build Project
Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

It is our opinion, based on the properties of the soils underlying the proposed embankment, that rammed aggregate piers (such as "Geopiers" or "Vibro Piers", or equivalent systems) should be installed to modify and improve the natural soils so that suitable factors of safety relative to slope stability are assured and that settlement is limited. Because rammed aggregate piers soil modification methods are proprietary, these systems must be designed and drawings stamped by a registered engineer in the State of Indiana retained by the specialty contractor and the rammed aggregate piers must be installed by a specialty contractor with specific experience installing rammed aggregate piers. The design of the embankment foundation soil modification system shall be the responsibility of the contractor, however, the details of the proposed system shall be reviewed by, and subject to approval from, the INDOT Office of Geotechnical Engineering.

The rammed aggregate pier system should be designed to satisfactorily modify the foundation soils beneath the proposed west approach embankment for the State Road 68 bridge in order to support the proposed earth embankment with factors of safety that exceed the required factors of safety for global stability for end-of-construction condition (FS>1.2), the long-term condition (FS>1.3) and earthquake loading (FS>1.1) as noted in the tables above. The analysis under earthquake loading conditions should include a seismic coefficient of at least 0.1. Furthermore, the total settlement of the approach embankment should be limited to less than 3 in. and the settlement should be essentially complete prior to constructing the pavement for the approach embankment. At a minimum, it is recommended that rammed aggregate piers be installed between Station 241+00 and Station 244+75, Line "D" (based upon the bridge end bent location shown on the plans provided), between 60 ft left and 60 ft right of centerline (or beyond these limits if necessary for stability or to control settlement) and should extend to the shale bedrock.

Settlement calculations were also performed for a typical embankment fill section at about Station 20+00 Ramp "D". The analysis estimates that approximately 4 to 5 in. of

Geotechnical Engineering Investigation Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

settlement will occur at this location. Since the subsurface conditions along the ramps are relatively uniform and the grade change along the ramps occurs gradually, it is expected that the settlement of the embankments for the ramps will be uniform such that it may not be necessary to delay paving of the ramps until the settlement has substantially ceased.

The east approach embankment for the State Road 68 bridge over Interstate 69 (about Station 248+00 to 252+00 Line "D") and the approach embankments for the Nobles Chapel Road bridge over Interstate 69 (about Station 34+00 to 36+30 and about Station 39+00 to 40+00 Line "S-2-A-PR") will be constructed over compressible soils. Although it is apparent based upon slope stability analyses performed for the east approach embankment for the State Road 68 bridge over Interstate 69 that these embankments will have a suitable factor of safety relative to global stability, it appears that the estimated settlements will be unacceptable at these locations. While it is expected that a portion of the settlement that will result from the weight of the new embankments will occur during the construction of the roadway project, some long term settlement must be anticipated. Calculations using compressibility parameters based on the results of a consolidation test performed on a representative sample, as well as published literature, indicate that it will take on the order of about 2 years for 90 percent of the settlement to occur after completion of these embankments. The maximum total settlement at the centerline of the embankment sections are estimated to be in the range of about 9 to 12 in. (settlement estimate calculations are presented in Appendix H). The settlement at the crests (or shoulders) of the embankments will be about half that at the centerline.

Due to the estimated time of consolidation for the proposed approach embankments, it is recommended that wick drains be used to accelerate the dissipation of pore water pressure and consolidation of the compressible silty clay soils that underlie the proposed east approach embankment for the State Road 68 bridge (about Station 248+00 to

252+00 Line "D") and both of the approach embankments for the Nobles Chapel Road bridge (about Station 34+00 to 36+30 and about Station 39+00 to 40+00 Line "S-2-A-PR"). Wick drains shall not be needed within the reinforced zone if MSE walls are constructed since the soils will be removed from beneath the reinforced zones.

The following table summarizes estimated periods for settlement to occur for various triangular wick drain spacing. These settlement period estimates are based on the assumption that the wick drains will penetrate the entire thickness of the soft to medium stiff silty clay layers. It is estimated that the silty clay extends to depths in the range of about 15 to 19 ft below the existing ground surface. The wick drains should be installed throughout the roadway lengths of the new embankments described above between the toes of the embankments.

Wick Drain Spacing (Triangular Pattern)	Estimated Time Required for 90% Consolidation
4 ft	3 weeks
5 ft	1 month
6 ft	2 months
8 ft	3 months

It is important that the settlement plates be installed and monitored as presented in the INDOT Standard Specifications Section 204.03 to establish when the settlement has substantially ceased. The settlement plates should be located at least every 100 ft (with one of the settlement plates located at the highest embankment section for each embankment) along the centerline of the proposed east approach embankment for the State Road 68 bridge (about Station 248+00 to 252+00 Line "D") and the approach embankments for the Nobles Chapel Road bridge (about Station 34+00 to 36+30 and about Station 39+00 to 40+00 Line "S-2-A-PR", within approximately 100 to 130 ft of

Geotechnical Engineering Investigation

Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436 ATC Project No. 86.00481.0181

the end bents). It is recommended that paving be delayed until the settlement is less than

0.02 ft for four consecutive weeks. It is also recommended that fill for embankments

higher than about 15 ft be placed and completed as early as possible since these zones

will experience the greatest settlements.

Cut slopes in natural soil (assuming a maximum soil cut depth of about 18 ft) should be

made at 3 (horizontal) to 1 (vertical), or flatter. Where new fill is placed against a slope

that is 4 (horizontal) to 1 (vertical) or steeper, benches that are at least 10 ft wide should

be made into the existing soils to insure a good bond between the existing soils and the

new fill (see Section 203.21 – Embankment on Hillside or Slopes of the INDOT Standard

Specifications). The embankments should be constructed in accordance with INDOT

Standard Specification Section 203. The bedrock materials encountered in the test

borings can be used for constructing the embankments provided that these materials

(which consists primarily shale and sandstone) are placed according to INDOT Standard

Specifications Section 203.20(b) - Rock and Shale Embankment-Shale, Shale and Soft

Rock Mixtures, or Soft Rock. It will probably be possible to excavate some of the

weathered shale and sandstone with conventional soil excavation equipment. It should

be possible to "rip" at the shale. However, there may be areas where the shale and

sandstone are too hard to rip or otherwise remove with conventional earthmoving

equipment.

5.5 High-Mast Light Towers

The project will include the installation of four new high mast lights at the interchange

for Interstate 69 and Interstate 64 and three high mast lights at the interchange for

Interstate 69 and State Road 68. The approximate locations of the high mast lights are

summarized in the following table:

ATC Associates Inc.

HIGH MAST LIGHT LOCATIONS

TOWER DESIGNATION*	STATION	LINE	OFFSET
TL-16	1494+00	"A"	550 Right
TL-17	1494+00	"A"	350 Left
TL-18	1503+00	"A"	210 Right
TL-19	1504+00	"A"	670 Left
TL-20	1582+00	"A"	160 Right
TL-21	1589+00	"A"	450 Left
TL-22	1594+00	"A"	380 Right

^{*} Based on ATC test boring location designations

It is assumed that the proposed high mast light towers will be supported on drilled shaft foundations. The INDOT Standard High Mast Tower Foundation (INDOT Standard Drawing No. E 807-LTFD-07) consists of a 4.0 ft diameter drilled shaft that is 20 ft long with 20 full length #11 reinforcing steel bars. This foundation size, minimum length and reinforcing steel arrangement were used in our analyses. At the time of this study, the specific information regarding the tower heights and loading conditions were not determined. For the purpose of this study it has been assumed that the maximum bending moment, axial force and shear force at the bases of the high mast light towers (i.e., the top of the foundations) will not exceed 500,000 ft-lbs., 8,000 lbs. and 7,000 lbs., respectively, and that the towers can tolerate a maximum pile head deflection of 1.0 in. If the actual loading conditions on any of the high mast lights exceed these values, the foundations should be analyzed based on the specific loading conditions. Furthermore, if the actual high mast light locations vary from those summarized above, additional analyses, and possibly additional test borings, will be required.

Lateral foundation analyses were performed using the computer program LPILE Plus 3.0 for selected representative high mast light tower locations based on the standard high

Geotechnical Engineering Investigation Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

mast light drilled shaft foundation described above, the assumed loading conditions and

the test borings that were drilled at the proposed foundation locations. The results of the

lateral foundation analyses are included in Appendix I. The analyses indicate that all of

the proposed high mast lights summarized in the table above can be supported on the

INDOT standard foundation (as described above), except for the towers designated

herein as TL-20 and TL-21, which our analyses indicate should extend to bear on

bedrock at depths of 25 ft and 35 ft, respectively. The analyses indicate that the lateral

deflection at the top of the drilled shaft foundations will not exceed about 1 in. under the

assumed loading conditions.

The following table summarizes the locations of the proposed high mast light towers for

this project along with the recommended foundation lengths based on the lateral

foundation analyses described above. It should be noted that loading conditions have

been assumed and that these analyses do not account for any underground utilities that

may be located in the vicinity of the high mast light tower foundations. The

recommendations contained herein are based on the assumption that any underground

utilities that are located near the tower foundations will provide lateral resistance at least

as great as the soil conditions used in the models and that the utilities can withstand the

loads imparted by the foundations.

ATC Associates Inc.

RECOMMENDED HIGH MAST TOWER FOUNDATION LENGTHS

TOWER DESIGNATION	STATION	LINE	OFFSET	RECOMMENDED FOUNDATION LENGTH, FT*
TL-16	1494+00	"A"	550 Right	20
TL-17	1494+00	"A"	350 Left	20
TL-18	1503+00	"A"	210 Right	20
TL-19	1504+00	"A"	670 Left	20
TL-20	1582+00	"A"	160 Right	25**
TL-21	1589+00	"A"	450 Left	35**
TL-22	1594+00	"A"	380 Right	20

^{*} Length of drilled shaft below the ground surface based on the INDOT Standard High Mast Tower Foundation (INDOT Standard Drawing No. E 807-LTFD-07).

The drilled shafts should be designed and constructed in general accordance with ACI 336.3R "Design and Construction of Drilled Shafts". Temporary steel casing may be required in some cases to prevent caving of the soils into the excavations.

It is recommended that the geotechnical consultant observe the entire drilling operations during the drilled shaft installation process. The inspection of the drilled shaft can be performed without entering the shaft excavations by observing the drilling operations and auger-cuttings throughout the entire length of the shaft excavation. It is important that the shaft excavation and subsurface conditions be monitored until the concrete is placement is complete to verify that the otherwise competent soils are not adversely affected by improper construction methods. It is important that the concrete be placed and the casing removed in such a fashion as to prevent "necking" of the drilled shaft and inclusion of soil and water within the shaft. Unless the excavation is entirely dry, the concrete must be placed by tremie or concrete pump.

^{**} TL-20 and TL-21 must extend to bear on bedrock.

Geotechnical Engineering Investigation Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

If a shaft excavation is to be entered (which is not recommended), all local, state and federal

safety regulations, including those regarding confined space entry, should be followed. No

open flame should be permitted on the site near the drilled shaft excavation and no personnel

should be allowed to enter the excavation until proper safety precautions for confined space

entry have been taken. Such precautions should include proper personal protective

equipment and monitoring of the excavations for explosive vapors and oxygen deficiency.

Additional safety measures may be needed depending upon the specific conditions at the

foundation locations, the construction procedures employed and the applicable local, state

and federal Occupational Health and Safety Administration (OSHA) Regulations.

The need for some dewatering should be anticipated if the "dry construction" method is to be

used. At the time of our investigation, ground water appeared to be above the bases of the

shafts at many locations. Thus, ground water seepage should be expected in the drilled shaft

excavations. In general, water should not be pumped directly from the excavation since it

can cause deterioration of the base of the excavation.

5.6 Pavements

Based on the general consistency of the soils that were encountered in the test borings

and our experience on other projects with similar soil conditions, it is anticipated that

significant subgrade problems may be encountered in much of the pavement areas that

are in cut or at-grade sections. Most of the subgrade soils have high silt contents and

even those soils that may currently be relatively firm can easily become unstable during

construction when exposed to precipitation and construction traffic. The drainage ditches

should be cut prior to any other construction work beginning on this project. This will

help to reduce the moisture within the subgrade soils, which are inherently wet. In order

to attain a suitable foundation for the pavement subgrade in cut and at-grade areas, the

foundation soils may require some modification to reduce the excess moisture content.

This can be achieved by performing in-place chemical modification of the exposed

ATC Associates Inc.

Geotechnical Engineering Investigation Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

M-069-0 (004), INDOT Des. No. 0500436 ATC Project No. 86.00481.0181

subgrade. It is suggested that an undistributed quantity of chemical modification be

included in the contract to be used where determined to be necessary to provide a suitable

foundation for the pavement. It is not possible to accurately determine beforehand the

amount of chemical modification that may be required since this is dependent upon

seasonal conditions, construction equipment and methods and the specific soil type

encountered at the subgrade level. However, based upon the soil types that were

encountered in the test borings, the currently planned cross-sections and the expected

schedule for this project, it is possible that approximately 75 percent of the subgrade

could require chemical modification.

Based upon the results of the resilient modulus tests conducted for this project, a resilient

modulus value of 6,000 lbs/sq.in. is recommended for use in the design of the pavements

for Interstate 69 mainline and ramps, State Road 68 and State Road 57. A resilient

modulus value of 3,300 lbs/sq.in. is recommended for use in the design of the pavements

for Nobles Chapel Road, Old Nobles Chapel Road, Old State Road 57 and the local

access road. The results of the resilient modulus tests are included in Appendix D. Due

to the presence of high silt content soils, the moisture content during construction shall be

controlled within a range of 3 percent below the optimum moisture content to the

optimum moisture content. In no case shall the soils be placed and compacted at a

moisture content in excess of the optimum moisture content. Recommendations for the

removal and replacement of any unsuitable materials that may be encountered during

construction are provided in Sections 6.3 and 6.4 of this report.

It is recommended that Type IA Subgrade Treatment in accordance with INDOT

Standard Specifications Section 207.04 be used for the Interstate 69 mainline and ramps,

State Road 68 and State Road 57 pavement subgrade in conjunction with a resilient

modulus value of 6,000 lbs/sq.in. It is recommended that Type III Subgrade Treatment

be used for the realignment of Nobles Chapel Road, Old Nobles Chapel Road, Old State

Road 57 and the local access road in conjunction with a resilient modulus value of 3,300

ATC Associates Inc.

Geotechnical Engineering Investigation

Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

lbs/sq.in. Adequate drainage should be provided at the site to minimize any increase in

moisture content of the subgrade soils.

Where overlay of the existing pavement (rather than reconstruction) is planned, it is

recommended that the existing pavement be inspected for cracking and deterioration

prior to the overlay. Any portions of pavement that exhibit such features should be

removed and reconstructed according to the guidelines outlined in the following

paragraphs.

5.7 Pavement Drainage

Adequate drainage should be provided at the site with outlets at regular intervals to minimize

any increase in moisture content of the subgrade soils. Subsurface drains are recommended

for this project. Filter fabric will be needed due to the silty nature of the subgrade soils.

The drainage ditches should be cut prior to any other construction work beginning on this

project. This will help to reduce the moisture within the subgrade soils, which are

inherently wet.

5.8 pH Values

The soil samples tested during the laboratory investigation indicate elevated pH values at

some locations. Protective measures should be considered for underground structures.

ATC Associates Inc.

Summary of Soil pH Values

Boring Number	Depth, ft	pH Value
RB-49	13.5 – 15.0	7.3
RB-57	1.0 – 2.5	6.2
TB-3	8.5 – 10.0	7.6
TB-4	13.5 – 15.0	7.4
TB-4	28.5 – 30.0	8.1
TB-10	13.5 – 15.0	6.9
TB-14	13.5 – 15.0	7.0
TL-21	3.5 – 5.0	5.7
TL-21	6.0 – 7.5	6.4

6.0 GENERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS

Since this investigation identified actual subsurface conditions only at the test boring locations, it was necessary for our geotechnical engineers to extrapolate these conditions in order to characterize the entire project site. Even under the best of circumstances, the conditions encountered during construction can be expected to vary somewhat from the test boring results and may, in the extreme case, differ to the extent that modifications to the foundation recommendations become necessary. Therefore, we recommend that ATC be retained as geotechnical consultant through the earth-related phases of this project to correlate actual soil conditions with test boring data, identify variations, conduct additional tests that may be needed and recommend solutions to earth-related problems that may develop.

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436 ATC Project No. 86.00481.0181

6.1 Pile Installation

In order to assure that the bridge structure piles are properly installed, it is recommended that a representative of the geotechnical engineer who is independent of the contractor perform continuous inspection during pile installation. An accurate record should be kept of the date, time, depth of penetration, driving resistance and other pertinent data for each pile as well as the characteristics of the pile driver that is used. The pile driver should have sufficient energy to drive the piles to bearing as prescribed in Section 5.1 of this report. To assure proper pile capacity, the driving criteria to be used during production pile driving should be determined based upon the pile hammer and pile section that is used. The driving criteria will be established by the geotechnical engineer at the time of construction once the specific details regarding pile installation have been established. All pile driving should be done in accordance with INDOT Standard Specifications, Section 701.

6.2 Spread Footing Excavations

The bedrock at the base of the spread footing excavations that are designed to bear on bedrock (such as for the interior pier for the Nobles Chapel Road bridge over Interstate 69, Structure No. 2 – Station 1561+83 Line A, Structure No. 3 – Station 1590+11 Line A and the structure for the ditch on Ramp A-1) should be inspected to verify that the footings will bear on competent bedrock or on flowable fill placed on competent bedrock as prescribed in Sections 5.1.1, 5.2.1, 5.2.2 and 5.2.4. If loose bedrock, bedrock that has softened or soil is encountered at the base of the footing excavation, the unsuitable materials should be removed and the footing bearing elevation should be extended to reach competent bedrock, which should then be re-inspected. If the actual footing bearing elevation cannot be lowered, the undercut excavation should be backfilled with concrete to re-establish the design footing bearing elevation.

The soil/rock at the base of each spread footing excavation for the pre-cast concrete arch structures should be inspected by a geotechnical engineer or a qualified soils technician

Geotechnical Engineering Investigation Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

to insure that all loose, soft or otherwise undesirable material (such as organic material,

sediment from the streams, etc.) is removed from beneath the footing locations and that

the footings will bear on satisfactory material. At the time of such inspection, it will be

necessary to make hand auger borings or use a hand penetration device in the base of the

foundation excavations in soils to insure that the soils below the base are satisfactory for

foundation support. The necessary depth of penetration will be established during

inspection.

If soft, loose or otherwise unsuitable materials are encountered at the footing bearing

elevation and it is inconvenient to lower the footings, the proposed footing bearing

elevations may be re-established by backfilling after the undesirable material has been

removed. The undercut excavation beneath each footing should extend to suitable bearing

materials and the dimensions of the excavation base should be determined by imaginary

planes extending outward and down on a 2 (vertical) to 1 (horizontal) slope from the base

perimeter of the footing. The entire excavation should then be refilled with structure

backfill, flowable fill or lean concrete. Special care should be exercised to remove any

sloughed, loose or soft materials near the base of the excavation slopes. In addition, special

care should be taken to "tie-in" the compacted fill with the excavation slopes, with benches

as necessary, to insure that no pockets of loose or soft materials will be left in place along the

excavation slopes below the foundation bearing level.

Soils and bedrock that are exposed in the bases of all satisfactory footing excavations should

be protected against any detrimental change in condition such as from disturbance, rain and

freezing. Surface run-off water should be drained away from the excavation and not allowed

to pond. If possible, all footing concrete should be placed the same day the excavation is

made. If this is not practical, the footing excavations should be adequately protected.

ATC Associates Inc.

6.3 Site Preparation and Earthwork

All topsoil, wet, soft, loose or otherwise unsuitable surficial bearing soils should be stripped from the project site within the construction limits prior to construction of the roadway. The drainage ditches should be cut prior to any construction work beginning on this project. This will help to reduce the moisture within the subgrade soils, which are inherently wet.

Based on the general consistency of the soils that were encountered in the test borings and our experience on other projects with similar soil conditions, it is anticipated that significant subgrade problems may be encountered in much of the pavement areas that are in cut or at-grade sections. Most of the subgrade soils have high silt contents and even those soils that may currently be relatively firm can easily become unstable during construction when exposed to precipitation and construction traffic. In order to attain a suitable foundation for the pavement subgrade in cut and at-grade areas, the foundation soils may require some modification to reduce the excess moisture content. This can be achieved by performing in-place chemical modification of the exposed subgrade. Furthermore, it is likely that special measures may be required in order to establish a firm foundation on which embankment fill will be placed. In such cases, chemical modification can be used to improve the subgrade soils so that a firm working base is established beneath embankments. It is suggested that an undistributed quantity of chemical modification be included in the contract to be used where determined to be necessary to provide a suitable foundation for the pavement or for the embankments. It is not possible to accurately determine beforehand the amount of chemical modification that may be required since this is dependent upon seasonal conditions, construction equipment and methods and the specific soil type encountered at the subgrade level. However, based upon the soil types that were encountered in the test borings, the currently planned cross-sections and the expected schedule for this project, it is possible that approximately 75 percent of the subgrade could require chemical modification.

Geotechnical Engineering Investigation

Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

(004), INDO1 Des. No. 0500436 ATC Project No. 86.00481.0181

Proofrolling of the natural ground surface should be performed in accordance with the

INDOT Standard Specifications Section 203.26 within all areas where new fill will be

placed. Care should be exercised during grading operations at the site. Due to the nature of

the near-surface soils, the traffic of construction equipment, including compaction

equipment, may create pumping and general deterioration of the shallower soils, especially if

excess surface water is present. The grading, therefore, should be done during a dry season,

if possible.

6.4 Placement and Compaction of Engineered Fill

Engineered fill should be placed in lift thicknesses not to exceed about 8 in. and compacted

to a minimum of 95 percent of the standard Proctor maximum dry density (AASHTO T99)

as specified in the current INDOT Standard Specifications. Due to the presence of high silt

content soils, the moisture content during construction shall be controlled within a range

of 3 percent below the optimum moisture content to the optimum moisture content. In no

case shall the soils be placed and compacted at a moisture content in excess of the

optimum moisture content. It is likely that some drying of the fill material will be required

before being placed in order to meet the INDOT Standard Specification for fill placement.

However, adequate moisture conditioning may be difficult during wet seasons and, during

such seasons, a granular material may be necessary to satisfy the minimum compaction

requirements.

Where the alignment of the roadway crosses existing drainage ditches, the soft sediment in

the base of the channels should be removed and replaced with "B" borrow to a thickness of

at least 2 ft above the free ground water level. Backfilling should be done in accordance

with Section 203.09 of the INDOT Standard Specifications.

ATC Associates Inc.

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

6.5 Fill Sections

It is recommended that the sideslopes of the new embankments be 3 (horizontal) to 1 (vertical), or flatter. Where fill material is placed on existing slopes, benches should be cut into the existing slopes subsequent to fill placement so as to preclude a shear plane from developing at the interface. Benches having a minimum width of 10.0 ft should be cut into the natural slopes and existing embankment side slopes that are 4 (horizontal) to 1 (vertical) or steeper before new engineered fill is placed. These benches should be excavated in accordance with Section 203.21 of the INDOT Standard Specifications.

6.6 Erosion Protection

Highly erodible, granular material (such as "B" borrow) should not be used in proposed ditches or within 12 in. of the required final grade of side slopes. The material required to encase the embankment should be non-erodible, cohesive material free from debris and other deleterious materials and suitable for sustaining vegetation. The final slopes should be seeded or sodded for erosion control. If seeded, the slope should be protected with an erosion control blanket to provide for adequate seed germination and rooting.

All topsoil and any soft sediments should be removed along the entire length of all proposed drainage structures and replaced with engineered fill to an elevation 2.0 ft above the ground water level or to the invert elevation of the proposed structure, whichever is higher. The outer 10 ft of "B" borrow under the ends of the structure should be enveloped with a continuous length of permeable non-woven geotextile. This geotextile should extend the entire width of the excavation. All the soils surrounding the drainage structures should be compacted to at least 95 percent of the maximum dry density as determined in accordance with section 203.24 of the INDOT standard specifications. The soil in the bottom of the excavation, any bedding material, and the structure backfill, should be tested to insure compliance with this density criteria. If during construction, soft soils are encountered at depths that make removal impractical or if 95 percent of the maximum dry density cannot be obtained at the bottom of the

Geotechnical Engineering Investigation

Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68, Gibson and Warrick Counties, Indiana

INDOT Project No. IM-069-0 (004), INDOT Des. No. 0500436

ATC Project No. 86.00481.0181

excavation or in other areas, this office should be contacted for additional recommendations.

6.7 Construction Dewatering

Based upon the ground water data obtained during drilling operations, it appears that some dewatering will be required in excavations made during construction. In cases where cohesive soils are encountered in the base of excavations, it is expected that such dewatering can be handled by conventional dewatering methods such as pumping from sumps. In cases where a saturated silt layer is encountered in the base of the excavation, it will not be possible to pump water directly from the base of the excavation without causing a quick condition and deterioration of the subgrade soil. In this case, it will be necessary to pump from a sump located adjacent to the excavation or to depress the ground water using wells or well points. A specialty dewatering contractor should be retained to install and maintain the dewatering system. The best dewatering system for each case must be determined at the time of construction based upon actual field conditions.

APPENDICES

APPENDIX A

PROJECT LOCATION MAP – Figure 1 VICINITY MAP – Figure 2 GENERAL CROSS SECTION OF BRIDGE STRUCTURE NO. 1 – Figure 3 GENERAL CROSS SECTION OF BRIDGE STRUCTURE NO. 4 – Figure 4

APPENDIX B

FIELD CLASSIFICATION SYSTEM FOR SOIL EXPLORATION LOGS OF TEST BORINGS - ROADWAY TEST BORINGS (61) LOGS OF TEST BORINGS - STRUCTURE TEST BORINGS (24)

APPENDIX C

SUMMARY OF LABORATORY CLASSIFICATION TEST RESULTS
SUMMARY OF SPECIAL LABORATORY TEST RESULTS
GRAIN SIZE DISTRIBUTION CURVES
STANDARD PROCTOR MOISTURE DENSITY RELATIONSHIP TEST RESULTS
UNCONFINED COMPRESSION TEST RESULTS

APPENDIX D RESILIENT MODULUS TEST RESULTS

APPENDIX E

CALCULATIONS FOR MSE WALL EXTERNAL STABILITY STABL6H OUTPUT FOR MSE WALL GLOBAL STABILITY

APPENDIX FBEARING CAPACITY CALCULATIONS

APPENDIX G STABL6H SLOPE STABILITY OUTPUT

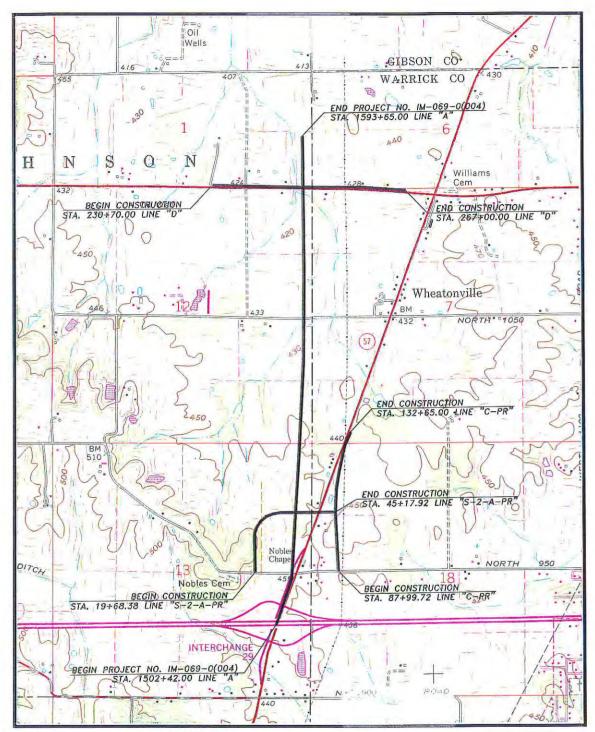
APPENDIX H
SETTLEMENT CALCULATIONS

APPENDIX ILPILE OUTPUT

APPENDIX J SPECIAL PROVISIONS

APPENDIX A

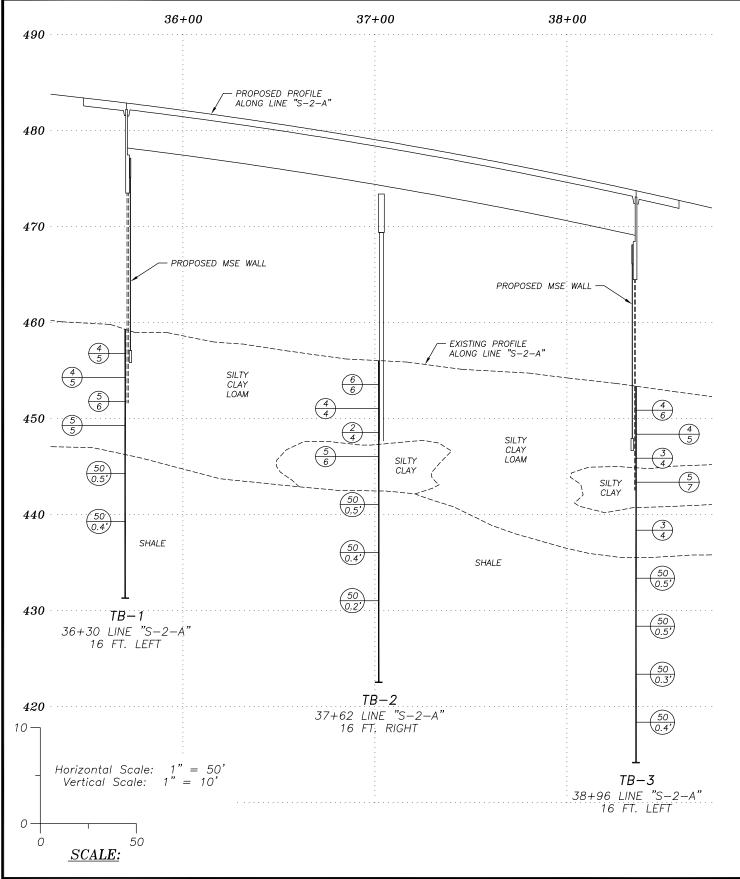
PROJECT LOCATION MAP – Figure 1 VICINITY MAP – Figure 2 GENERAL CROSS SECTION OF BRIDGE STRUCTURE NO. 1 – Figure 3 GENERAL CROSS SECTION OF BRIDGE STRUCTURE NO. 4 – Figure 4



PROJECT LOCATION MAP

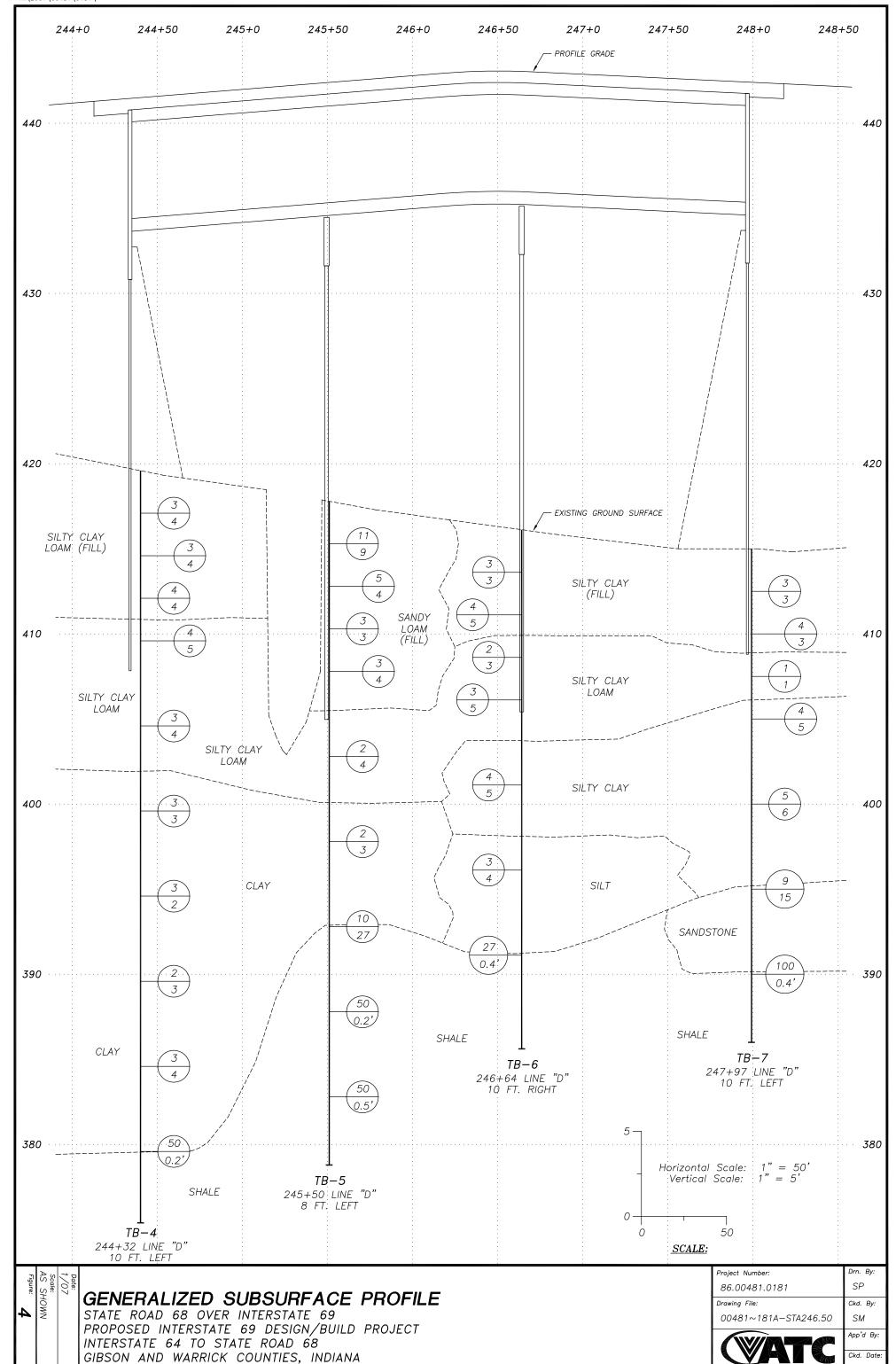
PROPOSED INTERSTATE 69 DESIGN/BUILD PROJECT INTERSTATE 64 TO STATE ROAD 68 GIBSON AND WARRICK COUNTIES, INDIANA

Project Number: 86.00481.0181		Drn. By: SP
Drawing File: 00481~181B		Ckd. By: SM
Date: 4/07	Scale: NOT TO SCALE	App'd By:
		Figure:



VICINITY MAP

PROPOSED INTERSTATE 69 DESIGN/BUILD PROJECT INTERSTATE 64 TO STATE ROAD 68 GIBSON AND WARRICK COUNTIES, INDIANA


Project Number: 86.00481.018	31	Drn. By: SP
Drawing File: 00481~181B		Ckd. By: SM
Date: 4/07	Scale: 1" = 2000'	App'd By:
	ATC.	Figure:

GENERALIZED SUBSURFACE PROFILE

PROPOSED INTERSTATE 69 DESIGN/BUILD PROJECT INTERSTATE 64 TO STATE ROAD 68 GIBSON AND WARRICK COUNTIES, INDIANA

Project Number: 86.00481.0181		Drn. By: SP
Drawing File: 00481~181B		Ckd. By: SM
Date: 4/07	Scale: AS SHOWN	App'd By:
		Figure:

APPENDIX B

FIELD CLASSIFICATION SYSTEM FOR SOIL EXPLORATION LOGS OF TEST BORINGS - ROADWAY TEST BORINGS (61) LOGS OF TEST BORINGS - STRUCTURE TEST BORINGS (24)

FIELD CLASSIFICATION SYSTEM FOR SOIL EXPLORATION

NON-COHESIVE SOILS

(Silt, Sand, Gravel and Combinations)

<u>Density</u>			Particle Size Identification			
Very Loose	-	5 blows/ft or less	Boulders	-	8 inch diame	ter or more
Loose	-	6 to 10 blows/ft	Cobbles	-	3 to 8 inch di	ameter
Medium Dense	-	11 to 30 blows/ft	Gravel	-	Coarse	- 1 to 3 inch
Dense	-	31 to 50 blows/ft			Medium	- ½ to 1 inch
Very Dense	-	51 blows/ft or more			Fine	- ½ to ½ inch
•			Sand	-	Coarse	2.00mm to 1/4 inch
						(dia. of pencil lead)
Relative Proportions				Medium	0.42 to 2.00mm	
Descriptive Terr	n	Percent				(dia. of broom straw)
Trace		1 - 10			Fine	0.074 to 0.42mm
Little		11 - 20				(dia. of human hair)
Some		21 - 35	Silt			0.074 to 0.002mm
And		36 - 50				(cannot see particles)

COHESIVE SOILS

(Clay, Silt and Combinations)

<u>Consistency</u>			<u>Plasticity</u>	
Very Soft	-	3 blows/ft or less	Degree of Plasticity	Plasticity Index
Soft	-	4 to 5 blows/ft	None to slight	0 - 4
Medium Stiff	-	6 to 10 blows/ft	Slight	5 - 7
Stiff	-	11 to 15 blows/ft	Medium	8 - 22
Very Stiff	-	16 to 30 blows/ft	High to Very High	over 22
Hard	-	31 blows/ft or more	-	

Classification on logs are made by visual inspection of samples.

Standard Penetration Test – Driving a 2.0 in. O.D. 1-3/8 in. I.D. sampler a distance of 1.0 ft into undisturbed soil with a 140 pound hammer free falling a distance of 30.0 in. It is customary for ATC to drive the spoon 6.0 in. to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and making the test are recorded for each 6.0 in. of penetration on the drill log (example – 6/8/9). The standard penetration test result can be obtained by adding the last two figures (i.e., 8 + 9 = 17 blows/ft). (ASTM D-1586-67).

Strata Changes – In the column "Soil Descriptions" on the drill log the horizontal lines represent strata changes. A solid line (——) represents an actually observed change. A dashed line (----) represents an estimated change.

Ground Water observations were made at the times indicated. Porosity of soil strata, weather conditions, site topography, etc., may cause changes in the water levels indicated on the logs

CLIENT American Structurepoint, Inc.

PROJECT NAME Proposed Interstate 69 Design/Build Project

PROJECT LOCATION Interstate 64 to State Road 68

Gibson and Warrick Counties, Indiana

BORING # RB-1

30B # 86.00481.0181

STATION 1504+00 Line "A"

40 ft Left

		Gibson and	Warrick (Count	ies, In	dian	<u>a</u>				0	FFSET_		40 ft Left
		DRILLING and SA	MPLING INF	ORMATI	ON		_					Т	EST DA	ATA
D	ate Started	1/17/07	Hammer W	/t.		140	lbs.							
	ate Completed	1/18/07	Hammer D			30								
	rill Foreman	T. Smoot	Spoon San	. –	1						st, ts			
In	spector	B. Kleeman	Rock Core								n Te men	_	يا	
	oring Method	HSA-Truck	Shelby Tub	· ·			·		ics hics		tratio	Moisture Content, %	mete	
				#	I			/be	sraph Grap	ıter	Penel 6 in.	Conte	netro	
	SC	OIL CLASSIFICATION		fion,	E, t	, ff	ole .	Sample Type	oler G	Groundwater	dard I	inre	et Pe	arks
	SURF	FACE ELEVATION 45	2	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, 1	Sample No.	Samp	Sampler Graphics Recovery Graphics	Grou	Standard Penetration Test, Blows per 6 in. Increments	Moist	Pocket Penetrometer PP-tsf	Remarks
	≰∖(Lab No. 1) A-	moist, medium stiff SI	,	451.8 450.0	0.2 2.0	- - -	1	SS	X		2-5-40	17.3		Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by
		n, maanaraa aanay ah	,			- - - -	2 ,	SS	X		50/0.5'			American Structurepoint, Inc.
						5-	3 /	SS	×=	2	50/0.4'			Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
	Bottom of Tes	t Boring at 8.9 ft		443.1	8.9	10-	4 /	SS	×	-	50/0.4'			Traffic control required
														Boring was drilled on edge of shoulder
														INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

● Noted on Drilling Tools None ft.

Dry ft.
Dry ft.
7.9 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

Page **1** of

CLIENT	American Structurepoint, Inc.	BORING #	RB-2
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	1508+50 Line "A"
	Gibson and Warrick Counties, Indiana	OFFSET	25 ft Left

	Gibson and Warrick Counties, Indiana DRILLING and SAMPLING INFORMATION											OFFSET_		25 ft Left
			_					Т	EST DA	ATA				
D	ate Started	1/17/07	Hammer W	/t		140	lbs.							
D	ate Completed	1/18/07	Hammer D	rop										
D	rill Foreman	T. Smoot	Spoon Sam	npler OD		2.0	in.				est,			
In	spector	B. Kleeman	Rock Core	Dia			in.				on Te emer	%	- o	
В	oring Method	HSA-Truck	Shelby Tub	e OD			in.		nics phics		tratic	ent, %	omet	
Г	SC	DIL CLASSIFICATION		#				Туре	Sampler Graphics Recovery Graphics	vater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	(0)
		FACE ELEVATION 45	4	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	ampler ecover	Groundwater	tandar Iows po	oisture	ocket F P-tsf	Remarks
\bot	Concrete (Vis			が 直 453.2	0.8	٥Ö	ΰŻ	Ø	ις Π	g	ν <u>α</u>	Σ	4 4	
	Dark gray, slight with sand sea	ghtly moist, very stiff, sil ms (FILL) -6		451.5	2.5	111	1	SS	X		7-9-9			estimated based upon Plan and Profile Sheets and Cross-Sections provided by
	Gray and brow CLAY LOAM (Lab No. 2) A	wn, slightly moist, very	stiff SILTY '	440.5		5—	2	SS	X		7-9-12			American Structurepoint, Inc.
- 	tb + Gray and brow + SILT + (Lab No. 7) A	wn, moist, medium stiff	to very stiff	448.5	5.5	-	3	SS	X	V	6-4-3	19.9		Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
-+ -+ -+ -+	+ + + + + + +			444.0	10.0	10—	4	SS	X	+	3-3-15	22.8		Traffic control required
	Bottom of Tes	at Boring at 10.0 ft				2								INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 Dry ft. ▼ After 24 hours **7.2** ft.

7.5 ft.

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-3 CLIENT_____ Proposed Interstate 69 Design/Build Project PROJECT NAME _____ 86.00481.0181 JOB# **1512+00 Line "A"** PROJECT LOCATION Interstate 64 to State Road 68

PROJECT LOCATIC	Gibson and				dian	a					OFFSET		60 ft Left
					MIGITI	<u> </u>					-		
	DRILLING and SA					Ī					<u> </u>	EST DA	ATA
Date Started _	1/11/07	Hammer V				- 11							
Date Completed	1/12/07	Hammer D				ll ll							
Drill Foreman	T. Smoot	Spoon San								Test			
Inspector	S. Marcum	Rock Core	_					Ŋ		tion .	%	eter	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		ohics aphic		netrai	tent,	rome	
Sci	OIL CLASSIFICATION		, f			=	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	
	312 OE/ (OOII 10/ (1101 (atio	Stratum Depth, ft	e, t	Sample No.	ıple	over.	undv	ndard vs pe	sture	ket F	Remarks
SURF	ACE ELEVATION 45	7.8	Stratum Elevation, 1	Stra Dep	Depth Scale, 1	San No.	San	San	Gro	Star Blov	Moë	Poc P	Ren
Topsoil (Visua	al) ark brown, moist, soft S		457.4	0.4					Ā				Ground surface elevation provided by
- ∰ LOAM		ILTY CLAY				1	SS	\mathbb{X}_{-}		2-2-2		1.75	Bernarndin-Lochmueller &
(Lab No. 2) A	1-6		454.3	3.5	7				藺				Associates
Brown and gr	ray, moist, medium stiff	to stiff			7	2	SS	\bigvee		3-5-5		2.25	
SILTY CLAY (Lab No. 2) A					5-			$^{\prime}$					Boring was backfilled in
						3	SS	$\sqrt{}$		5-5-7		3.5	accordance with the INDOT
								Δ_				0.0	Aquifer Protection Guidelines
							00						
			447.8	10.0	10	4	SS	X	⊽	4-4-7		2.5	
Bottom of Te	st Boring at 10.0 ft												
													INDOT Desi No IM 000 0
													INDOT Proj. No. IM-069-0 (004)
													INDOT Des. No. 0500436
				1									

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

2.9 ft.

 ∑ At Completion
 9.8 ft. ▼ After 24 hours **0.9** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-4 CLIENT_____ Proposed Interstate 69 Design/Build Project PROJECT NAME _____ 86.00481.0181 JOB# STATION 1516+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and Warrick Counties, Indiana DRILLING and SAMPLING INFORMATION											OFFSET_		90 ft Right
		DRILLING and SAI	ORMATI	ON		_					Т	EST DA	ATA	
Di Di In	ate Started ate Completed rill Foreman spector oring Method	1/11/07 1/12/07 T. Smoot S. Marcum HSA-ATV	Hammer W Hammer Di Spoon Sam Rock Core Shelby Tub	rop _ npler OD Dia		i	n. n. n.		ohics aphics		Standard Penetration Test, Blows per 6 in. Increments	tent, %	rometer	
		IL CLASSIFICATION ACE ELEVATION 45	8	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Per Blows per 6 i	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
	SURF Topsoil (Visual Brown, moist, (Lab No. 2) A-6 Brown and gra CLAY LOAM (Lab No. 2) A-6 Brown, moist, (Lab No. 1) A-6 Brown, severe	ACE ELEVATION 45) stiff, silty clay loam (File) by, moist, medium stiff silty clay loam stiff silty clay loam stiff silty clay loam stiff silty clay loam stiff silty clay		when the state of	Stratum Stratum 3. 8. 9. 9. 13. 14.1. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	5	90 on	Sample Sam	Sample	i⊠ i◀ Groundy	9-7-6 5-4-5 4-5-9 26-50/0.5		Pocket F	Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc. Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

Dry ft. ▼ After 24 hours **2.2** ft.

4.0 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-5 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ STATION _____1520+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and				dian	а					OFFSET_		80 ft Left
	DRILLING and SAMPLING INFORMATION Date Started Hammer Wt12										Т	EST DA	ATA
Date Started	1/11/07 1/12/07 T. Smoot S. Marcum HSA-ATV	Hammer W Hammer D Spoon San Rock Core Shelby Tub	rop _ npler OD Dia		30 2.0 	in. in. in.		ohics aphics		Standard Penetration Test, Blows per 6 in. Increments	tent, %	Penetrometer	
	OIL CLASSIFICATION ACE ELEVATION 457	7.3	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Per Blows per 6 i	Moisture Content,	Pocket Penel PP-tsf	Remarks
Brown and gr SILTY CLAY (Lab No. 2) A	ay, moist, medium stiff t LOAM	to stiff	457.0	0.3	- - - - -	1	SS	X		1-2-4		0.75	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
						2	SS			4-6-7	21.3	2.75	
					5—	3	SS	X	Ţ	4-6-7		2.75	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
- + + + + + + + + + + + + + + + + + + +					10-	4	SS	X	麵	4-5-5	21.8	2.0	
Brown, severe	ely weathered SHALE		443.8	13.5	15—	5	SS	X		20-50/0.5'			INDOT Proj. No. IM-069-0
Bottom of Tes	st Boring at 18.8 ft		438.5	18.8		6 /	SS	× -		50/0.3'			(004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After 24 hours

Dry ft. **5.9** ft. **9.6** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING # **RB-6** CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ STATION ______1528+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	,,,	dian	а					OFFSET		60 ft Right				
		DRILLING and SAI	ION							Т	EST DA	_		
Da Di In:	ate Started ate Completed rill Foreman _ spector oring Method	1/11/07 1/12/07 T. Smoot S. Marcum HSA-ATV	Hammer W Hammer D Spoon Sam Rock Core Shelby Tub	rop _ npler OD Dia		30 2.0 	in. in. in.		ohics aphics		Standard Penetration Test, Blows per 6 in. Increments	tent, %	Penetrometer	
		IL CLASSIFICATION ACE ELEVATION 452	3	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Per Blows per 6 i	Moisture Content,	Pocket Penel PP-tsf	Remarks
	Topsoil (Visua Brown and gra CLAY LOAM (Lab No. 2) A-	ay, moist, medium stiff s	SILTY — — /	451.8	0.5		1	SS	X	Ţ	2-2-4	25.3	0.75	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
	₩ ₩ ₩					_ =	2	SS		101	3-3-5	26.7	2.0	
	**************************************					5—	3	SS	X	22	4-4-5		2.75	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
	**************************************					10-	4	SS	X		4-4-5		2.5	Bulk sample obtained from 1.0 to 5.0 ft
	CLAY (Lab No. 1) A-	nd brown, moist, very st 7-6 t Boring at 15.0 ft	iff SILTY	439.3	13.0	15—	5	SS	X	₽	6-10-12		4.0	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. **14.8** ft.

▼ After 24 hours

☑ Cave Depth

0.3 ft. **5.1** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-7 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ STATION ______1532+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and Warrick Counties, Indi DRILLING and SAMPLING INFORMATION										OFFSET		60 ft Left
									Т	EST DA			
Date Started	1/11/07 1/12/07 T. Smoot S. Marcum HSA-ATV	Hammer W Hammer D Spoon San Rock Core Shelby Tub	rop _ npler OD Dia		30 2.0 	in. in. in.		hics phics		etration Test, . Increments	ent, %	ometer	
	IL CLASSIFICATION ACE ELEVATION 452	2.0	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
Brown and gra CLAY LOAM (Lab No. 2) A	ay, moist, medium stiff	SILTY — — /	451.7	0.3		1 2	SS SS	X	Ţ	2-2-4 3-4-5		2.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
-					5	3	SS SS	X	•	3-4-5 4-4-5			Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
SANDSTONE	rk brown, severely weat t Boring at 15.0 ft	thered	438.0	14.0 15.0	10	5	SS		፟፟፟፟፟፟፟፟፟	5-5-20			INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools 8.0 ft.

12.0 ft. ∑ At Completion
 ▼ After 24 hours **0.7** ft.

4.7 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-8 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 1536+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68 STATION ____

	Gibson and Warrick Counties, Indiana DRILLING and SAMPLING INFORMATION										OF	FSET_		60 ft Right
		DRILLING and SA	MPLING INF	ORMATI	ON		_					Т	EST DA	ATA
D	ate Started	1/11/07	Hammer W	/t.		140	lbs.							
D	ate Completed	1/12/07	Hammer D	rop		30	- 11							
	rill Foreman _	T. Smoot	Spoon San								st, nts			
Ir	spector	S. Marcum	Rock Core								n Te imer		<u></u>	
В	oring Method	HSA-ATV	Shelby Tub	e OD			in.	4)	phics aphics	٠	netratio in. Incre	ntent, %	tromete	
	SC	IL CLASSIFICATION		Stratum Elevation, ft	nn ۱, ft	, ft	ole	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	arks
		ACE ELEVATION 446	3.5		Stratum Depth, ft	Depth Scale, 1	Sample No.	Samp	Sam	-	Stand	Moist	Pock PP-ts	Remarks
	Topsoil (Visua Brown and gra SILTY CLAY I (Lab No. 2) A	ay, moist, stiff to mediu OAM	m stiff	446.2	0.3		1	SS	X	Ţ	4-4-7		2.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
	 					5 -	2	SS	X		5-5-6		2.0	
	¥ ¥ ¥					-	3	SS	X	1 23	4-4-5		2.25	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
	Brown and gra	ay, severely weathered	 SHALE	438.0	8.5	10-	4	SS	X		26-50/0.5'			
-				431.5	15.0	- - - - 15	5	SS	X		36-50/0.4'			
	Bottom of Tes	t Boring at 15.0 ft				15—								INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 Dry ft. ▼ After 24 hours

0.6 ft. **7.8** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# RB-9 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION _____1540+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and		dian	a				0	FFSET		60 ft Left		
	DRILLING and SAMPLING INFORMATION										Т	EST DA	ATA
Date Started	1/11/07 1/12/07 T. Smoot S. Marcum HSA-ATV	Hammer W Hammer D Spoon Sam Rock Core Shelby Tub	rop _ npler OD Dia		30 2.0 	in. in. in.		hics phics		etration Test, . Increments	lent, %	Penetrometer	
	OIL CLASSIFICATION ACE ELEVATION 452.	1	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penet PP-tsf	Remarks
Brown, gray a	nd dark brown, moist me LOAM	edium stiff	451.8	0.3		1	SS	X	Y	2-3-5	27.9	2.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					5 -	2	SS	X		2-3-5		2.5	
					,	3	SS	X		4-4-4	22.3	0.75	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
- + + + + + + + + + + + + + + + + + + +					10-	4	SS	X	賣	4-4-6		2.5	
Brown and da	rk brown, severely weath	ered	438.6	13.5	15—	5	SS	X		25-36-50/0.5'			INDOT Proj. No. IM-069-0 (004)
	ely weathered SHALE st Boring at 20.0 ft		434.1	18.0	20	6	SS	×		50/0.5'			INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After 24 hours

Dry ft. **1.4** ft. **8.9** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-10** CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION 1544+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

		Gibson and	Warrick	Count	ies, In	dian	а					OFFSET_		60 ft Right
		DRILLING and SAI	MPLING INF	ORMATI	ON		-					Т	EST DA	ATA
Da	ate Started	1/11/07	Hammer W	/t.		140	lbs.							
Da	ate Completed	1/12/07	Hammer D											
Dr	ill Foreman _	T. Smoot	Spoon San								est, nts			
Ins	spector	S. Marcum	Rock Core	Dia			in.				ın Te emer		 	
Вс	oring Method	HSA-ATV	Shelby Tub	e OD			in.		ics hics		tratio	int, %	mete	
	SC	DIL CLASSIFICATION		'n, ft	_ =	#		Type	Sampler Graphics Recovery Graphics	water	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	g
	SURF	ACE ELEVATION 435	i.4	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, f	Sample No.	Sample Type	Sample Recove	Groundwater	Standaı Blows p	Moistur	Pocket PP-tsf	Remarks
-	Topsoil (Visua Brown and gr CLAY LOAM (Lab No. 2) A	ay, moist, medium stiff	SILTY/	435.1	0.3	- - - - -	1	SS	X	Ţ	3-3-5		2.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
	,					-	2	SS	X		4-4-6		2.5	
	Brown, moist, (Lab No. 1) A	medium stiff SILTY CL 7-6	 AY	429.9	5.5	5	3	SS	X	28	5-5-5		1.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
	Brown and gra	ay, severely weathered	 SHALE	426.9	8.5	- - -	4	SS	V		36-43-50	,		
	Bottom of Tes	et Boring at 10.0 ft		425.4	10.0				Н					
	Bottom of Tes	at 10.0 ft												INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 Dry ft. ▼ After 24 hours

1.3 ft. **6.4** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-11** CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION _____1548+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

		Gibson and	Warrick	Count	ies, In	dian	а					OFFSET_	'	60 ft Left
		DRILLING and SAI	MPLING INF	ORMATI	ON		-					Т	EST DA	ATA
D	ate Started	1/11/07	Hammer W	/t		140	lbs.							
D	ate Completed	1/12/07	Hammer D	rop		30								
D	rill Foreman _	T. Smoot	Spoon San	npler OD							sst,			
In	spector	S. Marcum	Rock Core	Dia			in.				on Te emer	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u></u>	
В	oring Method	HSA-ATV	Shelby Tub	e OD			in.		hics phics		etratic . Incre	ent, %	omet	
		OL CLASSIFICATION	2	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
		ACE ELEVATION 434	.2	433.9	0.3	S D	Sa	Sa	RSa	Ģ		Ĕ	요표	
	Topsoil (Visua Brown, moist, LOAM (Lab No. 2) A	medium stiff to stiff SIL	TY CLAY	433.9	0.3	-	1	SS	X	Ţ	2-3-5		3.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
	*					5—	2	SS		癩	6-6-6		2.75	
	*					-	3	SS	X		5-5-6		2.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
	(Lab No 1) A-		AY	425.7	8.5 10.0	10—	4	SS	X	ӯ	4-4-6		2.5	
		7-6 It Boring at 10.0 ft		424.2	10.0	10				▼				INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

None ft. Noted on Drilling Tools

 ∑ At Completion
 9.8 ft. ▼ After 24 hours **1.2** ft.

4.6 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-12** CLIENT_____ Proposed Interstate 69 Design/Build Project PROJECT NAME _____ 86.00481.0181 JOB# STATION 1552+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

11100	201 200/11101	Gibson and				dian	 а					FFSET		60 ft Right
		DRILLING and SA				diair	<u> </u>					_	EST DA	
_							[ESTU	
	te Started	1/19/07	Hammer V											
	te Completed	1/20/07	Hammer D				- 11				*			
	ll Foreman _	T. Smoot	Spoon San								Test			
	pector	B. Kleeman	Rock Core						υ		tion .	%	eter	
Boi	ring Method	HSA-ATV	Shelby Tub	e OD			in.	4)	phics aphic		netra in. Inc	ntent,	trome	
	SO	IL CLASSIFICATION		Stratum Elevation, ft	_ =	ft		Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Penetrometer	g
	CUDE	ACE ELEVATION 400		atum vatio	Stratum Depth, ft	Depth Scale, f	Sample No.	mple	mple	ound	andai ows p	oistur	Pocket PP-tsf	Remarks
		ACE ELEVATION 428	3.0			Sc	Sa	Sa	∏ Sa Re		Str	ğ	88	_
1++ -1++		l) nd light gray, very moist	t, very soft	428.3	0.3		1	SS		Ā	1-1-2	22.6	1.0	Ground surface elevation provided by
1++	SILT (Lab No. 7) A-	4		425.6	3.0	-		00	Ă,	園			1.0	Bernarndin-Lochmueller & Associates
] 	Brown, moist,	soft SILT		1			2	SS	\/		2-2-3	23.5	1.0	
1 + +	(Lab No. 7) A-	4				5 		00	Ă_		2-2-0	20.0	1.0	
 - - 				422.6	6.0	_		00				00.4	0.75	Boring was backfilled in accordance with the INDOT
	Brown, moist, (Lab No. 2) A-	stiff SILTY CLAY LOA 6	M			_	3	SS	X		5-5-6	20.1	2.75	Aquifer Protection Guidelines
				420.1	8.5	-								
	Brown, gray a (Lab No. 1) A-	nd black, moist, stiff SII	LTY CLAY			-	4	SS	X		5-4-7	27.9	3.0	
	(Lab No. 1) A-	7-0				10 —								
						_								
						_								
	Brown and gra	 y, weathered sandy SH		415.1	13.5	_	5	SS	\bigvee		34-48-50/0.4'			
#				413.7	14.9	15—			Δ					
	Bottom of Tes	t Boring at 14.9 ft												INDOT Proj. No. IM-069-0 (004)
														INDÓT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

None ft. Noted on Drilling Tools

 ∑ At Completion
 Dry ft. ▼ After 24 hours **0.9** ft. **2.3** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# RB-13 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION ______1556+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and	Warrick	Count	ies, In	dian	а					OFFSET_	-	60 ft Left
	DRILLING and SAI	MPLING INF	ORMATI	ION		_					Т	EST DA	ATA
Date Started	1/19/07	Hammer W	/t.		140	lbs.							
Date Completed	1/20/07	Hammer D	rop		30	- 11							
Drill Foreman	T. Smoot	Spoon San	npler OD		2.0	in.				est, nts			
Inspector	B. Kleeman	Rock Core	Dia			in.				on Te	%	<u></u>	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		Sirics		etratic . Incre	ent, %	omet	
SC	DIL CLASSIFICATION		Stratum Elevation, ft	h, ft	e, ft	ple	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	arks
SURF	ACE ELEVATION 431	.1	Stratu	Stratum Depth, ft	Depth Scale, 1	Sample No.	Sam	Sam	Grou	Stan	Mois	Pock PP-ts	Remarks
Topsoil (Visua Brown, moist, (Lab No. 1) A	medium stiff to stiff SIL	TY CLAY	430.8	0.3	- - - - -	1	SS	X	五	2-3-5		2.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
						2	SS	X		4-5-6		2.5	
					5	3	SS	X		3-5-6		2.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS	X		4-4-6	23.7	2.5	
(Lab No. 4) A	ack, moist, very stiff SIL -7-6 at Boring at 15.0 ft	TY CLAY	418.1	13.0	15—	5	SS	X		10-10-13		3.5	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After 24 hours

Dry ft. **0.6** ft.

2.9 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# RB-14 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION _____1566+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

		Gibson and	Warrick (Count	ies, In	dian	a					OFFSET_		60 ft Right
		DRILLING and SAI	MPLING INFO	ORMATI	ON		_					Т	EST DA	ATA
Date St		1/19/07	Hammer W			140	- 11							
Date Co	completed	<u>1/20/07</u> T. Smoot	Hammer D Spoon San	. –		30	- 11				s it			
Inspecto	_	B. Kleeman	Rock Core								. Tes nent			
	Method	HSA-ATV	Shelby Tub	· ·					<u>8.8</u>		ation ncrer	ıt, %	neter	
								e	aphic	e	enetr 3 in. II	onten	etron	
	SO	IL CLASSIFICATION		ım tion, ft	₽ "	٦ 3, ft	ole	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	arks
	SURFA	ACE ELEVATION 422	.8	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, 1	Sample No.	Samp	Sam Reco	Grou	Stand	Moist	Pock PP-ts	Remarks
Bro	psoil (Visua own and gra TY CLAY L ab No. 2) A-	ay, moist, medium stiff t OAM	to stiff	422.3	0.5		1	SS	X	-	2-3-3	25.3	2.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
						5—	2	SS	X		4-6-6	23.1	2.75	
				414.8	8.0	3 - -	3	SS	X		4-4-4		3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
CLA (Lal	.ÁY ab No. 1) A-	vn, moist, medium stiff s 7-6 t Boring at 10.0 ft	SILTY	412.8	10.0	10-	4	SS	X		4-4-5		3.0	
Bot	ab No. 1) A-ttom of Tes	7-6 t Boring at 10.0 ft		412.8	10.0	10 —								INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After 24 hours

Dry ft. **0.1** ft. **0.1** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-15 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ STATION _____1570+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and	l Warrick	Count	ies, In	dian	a					OFFSET_		60 ft Left
	DRILLING and SA	MPLING INF	ORMATI	ON		_					Т	EST DA	ATA
Date Started	1/19/07	Hammer W	/t.		140	lbs.							
Date Complete		Hammer D	rop										
Drill Foreman	T. Smoot	Spoon San	npler OD		2.0	in.				est, nts			
Inspector	B. Kleeman	Rock Core	Dia			in.				on Te emer	%	in in	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		hics phics		etratic . Incr	ent, %	omet	
	SOIL CLASSIFICATION		m tion, ft	щ, t	r, ff	ole	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	arks
SUF	RFACE ELEVATION 425	5.2	Stratum Elevation, 1	Stratum Depth, ft	Depth Scale, 1	Sample No.	Samp	Samp	Grou	Stand	Moist	Pock PP-ts	Remarks
Topsoil (Visible Brown, mo	st, medium stiff SILTY CL	AY LOAM	424.7	0.5		1	SS	X	1	2-3-4	25.8	2.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					5—	2	SS			4-4-4	21.4	2.5	
					- - -	3	SS	X		4-5-5	20.6	3.25	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
-brown and	gray below 8.0 ft				10-	4	SS	X		4-4-4		2.5	
Brown, mo		 AY	413.2	12.0	- - -								
	est Boring at 15.0 ft		410.2	15.0	15—	5	SS	X		3-3-3		2.25	INDOT Proj. No. IM-069-0
	Cot Boiling at 10.0 it												(004) INDOT Des. No. 0500436
								Ш					

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

2.9 ft.

 ∑ At Completion
 Dry ft. ▼ After 24 hours **0.1** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# RB-16 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ STATION _____1574+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and Wa			diana					OFFSET_		60 ft Right
	DRILLING and SAMPLI	NG INFORMAT	TION						TI	EST DA	ATA
Date Started	1/21/07 Ha T. Smoot Sp B. Kleeman Ro		D	ir	1. 1. 1.	ohics Aphics		Standard Penetration Test, Blows per 6 in. Increments	tent, %	Penetrometer	
	OIL CLASSIFICATION ACE ELEVATION 426.3	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	No. Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Per Blows per 6 ii	Moisture Content,	Pocket Penet PP-tsf	Remarks
Topsoil (Visua Brown, gray a to stiff SILTY (Lab No. 2) A	ind dark brown, moist, medic CLAY LOAM	, 425.8		1	1 SS	Ш	繭	2-4-4	26.6	2.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
				5	2 SS			5-4-5		2.5	
		418.3	8.0		3 SS	X		5-5-6	19.4	2.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown and grastiff to soft SII (Lab No. 1) A		um		10	4 SS	X		5-5-5		3.5	
		409.3	17.0	15	5 SS	X	•	3-2-3	30.7	1.75	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
(Lab No. 5) A	oist, medium stiff CLAY -7-6 st Boring at 20.0 ft	406.3	20.0		6 SS	X	⊽	3-3-3		0.5	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools 13.5 ft.

 ∑ At Completion
 19.8 ft. ▼ After 24 hours **0.1** ft.

1.4 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# RB-17 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION _____1578+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and				dian	а					OFFSET		60 ft Left
	DRILLING and SAI	MPLING INFO	ORMATI	ON							T	EST DA	
Date Started Date Completed Drill Foreman Inspector Boring Method	1/20/07 1/21/07 T. Smoot B. Kleeman HSA-ATV	Hammer W Hammer D Spoon San Rock Core Shelby Tub	rop _ npler OD Dia		30 2.0 	in. in. in.		hics phics		etration Test, . Increments	ent, %	ometer	
	OIL CLASSIFICATION ACE ELEVATION 425	.2	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
Topsoil (Visua Brown and gra SILTY CLAY I (Lab No. 2) A-	ay, moist, medium stiff t OAM	to stiff	424.6	0.6		1	SS	X	瀬	2-4-4	00.0	2.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					5 -	3	SS	X		6-6-7 6-6-8	23.2	3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS	X		6-6-7	21.0	3.0	
- * * * * * * * * * * * * * * * * * * *					15—	5	SS	X	҄	4-4-5	24.0	3.5	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
(Lab No. 5) A-	noist, very soft CLAY -7-6 et Boring at 20.0 ft		407.2	18.0	20	6	SS	X	•	2-1-2	27.9	0.5	INDOT Des. No. 0300430

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools 19.8 ft. 16.5 ft.

 ∑ At Completion
 ▼ After 24 hours

0.1 ft. **2.8** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-18** CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 1582+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68 STATION ____

		Gibson and	Warrick	Count	ies, In	dian	a					DFFSET_		60 ft Right
		DRILLING and SA	MPLING INF	ORMAT	ON		_					Т	EST DA	ATA
Da	ate Started	1/22/07	Hammer W	/t.		140	lbs.							
	te Completed	1/23/07	Hammer D			30								
	ill Foreman	T. Smoot	Spoon San	. –							st, ts			
Ins	spector -	S. Marcum	Rock Core								n Te men		ي ا	
		HSA-ATV	Shelby Tub	e OD			·		Sics		ratio	rt, %	nete	
_						1) Se	aphi	l in	enet 3 in. l	Juter	etro	
	SC	IL CLASSIFICATION		n on, ft	Ε Ψ΄.	#	<u>e</u>	le Tyr	er Gr ery G	dwat	ard P	le C	t Pen	گ
	SURF	ACE ELEVATION 416	5.3	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, 1	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
	[] (Lab No. 1) A	very soft SILTY CLAY		416.1 415.3	0.2 1.0	- - - -	1	SS	X	Ţ	1-1-2	25.2	1.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
	CLAY LOAM (Lab No. 2) A	-				-	2	SS	X		8-5-5	20.4	1.75	
	Brown and gr	 ay, slightly moist, mediu		410.8	5.5	5-				躏				Boring was backfilled in
1 + +	(Lab No. 9) A-					-	3	SS	X		5-5-5	21.1	0.5	accordance with the INDOT Aquifer Protection Guidelines
+	Danisia and an			408.3	8.0	_								
3///	(Lab No. 5) A	ay, moist, stiff CLAY -7-6				-	4	SS	X		5-6-6		2.0	
				405.3	11.0	10 —								
		ay, moist, medium stiff	SILTY	, 400.0	11.0	_								
	CLAY (Lab No. 4) A	-7-6				_								
						-	5	SS	\bigvee		4-4-4		1.75	
1	D // CT	1D : 14506		401.3	15.0	15—			Α					INDOTED IN IMAGE
	Bottom of Tes	t Boring at 15.0 ft												INDOT Proj. No. IM-069-0 (004)
														INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools **13.0** ft. Dry ft.

0.8 ft.

5.4 ft.

 ∑ At Completion
 ▼ After 24 hours

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

CLIENT	American Structurepoint, Inc.	BORING #	RB-19
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	1586+00 Line "A"
	Gibson and Warrick Counties, Indiana	OFFSET	60 ft Left

		Gibson and	Warrick	Counti	ies, In	dian	а					OFFSET		60 ft Left
		DRILLING and SAI	MPLING INF	ORMATI	ON		-					Т	EST DA	ATA
Date Sta	arted	1/18/07	Hammer W	/t.		140	lbs.							
	ompleted	1/19/07	Hammer D											
Drill Fore		T. Smoot	Spoon San								st,			
Inspecto	or	B. Kleeman	Rock Core	Dia			in.				n Te		 	
Boring N	Method	HSA-ATV	Shelby Tub	e OD			in.		ics hics		tratio	nt, %	mete	
		IL CLASSIFICATION ACE ELEVATION 411	.7	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
+ + Ligh + + SIL1 + + (Lab	T b No. 7) A- wn and ligh	nd light gray, very moist		411.2	0.5 3.0		1 2	SS SS	X	繭	1-1-1 4-3-4	23.5	0.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
+ + (Lab	AY LOAM b No. 2) A-	ck, moist, medium stiff	_	405.7	6.0 8.0	5	3	SS	X	⊻	4-3-4	21.9	0.75	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
CLA (Lab	AY LOAM b No. 2) A-	ay, moist, medium stiff & 6 t Boring at 10.0 ft	SILTY — —	401.7	10.0	10—	4	SS	X		3-4-5	24.6	3.0	
														INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After 24 hours

7.5 ft. **0.6** ft.

2.6 ft.

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

CLIENT American Structurepoint, Inc. BORING # RB-20 PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ **232+00 Line "D"** PROJECT LOCATION Interstate 64 to State Road 68

Gibson and Warrick	Count	ies, In	dian	a					OFFSET_		8 ft Left
DRILLING and SAMPLING INF	ORMAT	ION		_					Т	EST DA	ATA
Date Started1/16/07 Hammer V	Vt		140	lbs.							
Date Completed 1/16/07 Hammer D	rop _		30	ll ll							
Drill Foreman T. Smoot Spoon Sar	npler OD		2.0	in.				est, nts			
Inspector B. Kleeman Rock Core	Dia			in.				on Te	%	e	
Boring Method HSA-Truck Shelby Tub	oe OD			in.		ohics aphics		ietratic	tent, 9	romet	
SOIL CLASSIFICATION	Stratum Elevation, ft	um h, ft	e, ft	ble	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
SURFACE ELEVATION 429	Stratu	Stratum Depth, ft	Depth Scale, f	Sample No.	Sam	Sam	Grou	Stan Blow	Mois	Pock PP-ts	Rem
0.9 ft Asphalt, 1.0 ft Crushed Limestone (Visual) Brown and gray, moist, medium stiff SILTY	427.1	1.9		1	SS	X		7-5-5			Ground surface elevation provided by Bernarndin-Lochmueller & Associates
CLAY LOAM (Lab No. 2) A-6			5—	2	SS	X		3-5-3	24.0	1.75	
			-	3	SS	X	₹	5-5-5	13.6		Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
			10-	4	SS	X		5-4-4	22.7	2.5	Traffic control with flagmen required
Brown and gray, moist, stiff SILTY CLAY (Lab No. 1) A-7-6 Bottom of Test Boring at 15.0 ft	415.5	13.5 15.0	15	5	SS	X	商	5-5-8		2.25	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. **6.0** ft.

 ∑ At Completion
 ▼ After ____ hours

--_ ft. **13.0** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

CLIENT American Structurepoint, Inc. BORING # RB-21 PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ **236+00 Line "D"** PROJECT LOCATION Interstate 64 to State Road 68

		Gibson and				dian	a					OFFSET	-	8 ft Right
		DRILLING and SAI										_	EST DA	_
Da	ate Started ate Completed ill Foreman	1/16/07 1/17/07 T. Smoot	Hammer W Hammer Di Spoon Sam	rop _		30	in.				st, ts			
	spector	B. Kleeman	Rock Core								דeי men		_ ا	
	oring Method	HSA-Truck	Shelby Tub	e OD			. II	Φ	aphics raphics	ب	Standard Penetration Test, Blows per 6 in. Increments	ntent, %	Penetrometer	
	so	IL CLASSIFICATION		Stratum Elevation, ft	Stratum Depth, ft	th le, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	ndard Pe vs per 6	Moisture Content,	ket Pene Isf	Remarks
	SURF	ACE ELEVATION 42	4	Strat	Strai Depi	Depth Scale, 1	Sam No.	Sam	Sam	Grou	Star Blov	Mois	Pocket PP-tsf	Rem
-	Brown and gra	0.5 ft Crushed Limeston y, moist, stiff to medium OAM		422.5	1.5	- - - -	1	SS	X	I	5-5-6			Ground surface elevation provided by Bernarndin-Lochmueller & Associates
	(Lab No. 2) A-	0				5—	2	SS	X		6-7-8		3.5	
						- - -	3	SS	X	ӯ	5-6-8	21.4	3.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
						10-	4	SS	X		3-3-4		1.75	Traffic control with flagmen required
	Gray and brow (Lab No. 3) A-	vn, moist, soft SILTY Cl	 LAY LOAM	411.0	13.0	15	5	SS	X	22	3-2-3	33.7	2.0	INDOT Proj. No. IM-069-0
						- - - -	6	SS			2-2-3	25.4	0.5	(004) INDOT Des. No. 0500436
	Bottom of Tes	t Boring at 20.0 ft		404.0	20.0	20 —		33	Å		220	20.1	0.0	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

7.0 ft. ∑ At Completion

▼ After ____ hours ☑ Cave Depth

--_ ft. **13.1** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-22** CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# **240+00 Line "D"** PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and Warrick							OFFSET		8 ft Left		
	DRILLING and SAMPLING INF	ORMATI	ON						_	Т	EST DA	
Date Started Date Completed Drill Foreman Inspector Boring Method	1/3/07 Hammer V 1/3/07 Hammer D C. Carroll Spoon Sar S. Marcum Rock Core HSA-Truck Shelby Tulk	orop _ mpler OD Dia		30 2.0 	in. in. in.		ohics aphics		Standard Penetration Test, Blows per 6 in. Increments	tent, %	rometer	
	IL CLASSIFICATION ACE ELEVATION 422	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Per Blows per 6 i	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
- (Visual) Brown and gra	0.5 ft Crushed Limestone y, moist, medium stiff SILTY	421.0	1.0	- - - -	1	SS	X		3-4-3	21.3	2.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
(Lab No. 1) A-7	7-6			=	2	SS			4-3-4			
				5	3	SS	X		2-4-6	21.8	3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
				10-	4	SS	X	竊	3-5-6		3.0	Traffic control with flagmen required
				15—	5	SS	X		3-3-4	22.5	2.5	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
Bottom of Test	Boring at 20.0 ft	402.0	20.0	20	6	SS	X		3-3-3		0.5	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. ∑ At Completion

▼ After ____ hours

Dry ft. --_ ft. **9.2** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-23** CLIENT _____ 86.00481.0181 Proposed Interstate 69 Design/Build Project PROJECT NAME JOB# 252+00 Line "D" PROJECT LOCATION Interstate 64 to State Road 68 STATION

PROJECT LOCATIO	N <u>interstate 6</u>	4 to State	Roau	00						s	IATION		252+00 Line D
	Gibson and	Warrick (Count	ies, In	ndian	a				c	FFSET_		8 ft Right
	DRILLING and SA	MPLING INF	ORMATI	ION		_					Т	EST DA	ATA
Date Started	1/3/07	Hammer W	/t.		140	lbs.							
Date Completed	1/3/07	Hammer D											
Drill Foreman	C. Carroll	Spoon San	npler OD		2.0	in.				est, nts			
Inspector	S. Marcum	Rock Core	Dia			in.				on Te	%	ē	
Boring Method	HSA-Truck	Shelby Tub	e OD			in.		nics Ohics		Standard Penetration Test, Blows per 6 in. Increments	ent, %	Pocket Penetrometer PP-tsf	
				Ī	Π		ype	Gray	i i	Pene 6 in	Moisture Content,	enetr	
SC	DIL CLASSIFICATION		mr tion,	h, H	9. 17 14.	ple	Sample Type	pler (Giodildwater	dard s pei	ture	et Pe	arks
SURI	FACE ELEVATION 42	0	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, 1	Sample No.	Sam	Sampler Graphics Recovery Graphics	0 5	Stan	Mois	Pock PP-ts	Remarks
(Visual) Gray to brown trace crushed	, 0.5 ft Crushed Limeston, moist, medium stiff, solimestone (FILL)		418.8	1.2	- - - -	1	SS	X	;	3-4-6	22.5		Ground surface elevation provided by Bernarndin-Lochmueller & Associates
(Lab No. 1) A	-7-6				-	2	SS		;	3-3-3			
Brown, moist (Lab No. 1) A	 , medium stiff SILTY CL -7-6	 AY	414.0	6.0	5	3	SS		;	3-3-6	20.1	1.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS	X	;	3-3-4		3.0	Traffic control with flagmen required
Brown and gr SILTY CLAY (Lab No. 1) A	ray, moist, medium stiff	to very stiff	408.0	12.0	15—	5	SS		<u>.</u>	4-4-6	16.1	4.5+	INDOT Day No. 114 000 0
					- - -								INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
Bottom of Tes	st Boring at 20.0 ft		400.0	20.0	20-	6	SS	X	4	4-7-9			

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After ____ hours

Dry ft. --_ ft. **15.1** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-24** CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ **256+00 Line "D"** PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and		OFFSET_	'	8 ft Left								
	DRILLING and SA	AMPLING INFO	ORMATI	ION		_					Т	EST DA	ATA
Date Starte	red1/15/07	Hammer W	/t		140	lbs.							
Date Comp	pleted <u>1/15/07</u>	Hammer D	rop		30	- 11							
Drill Forem	nan <u>T. Smoot</u>	Spoon San	npler OD		2.0	in.				əst, nts			
Inspector	B. Kleeman	Rock Core	Dia			in.				on To	%	ia e	
Boring Me	ethod HSA-Truck	Shelby Tub				in.	a)	aphics aphics		netratic in. Incr	ntent, 9	tromet	
	SOIL CLASSIFICATION		Stratum Elevation, ft	E, t	, ft	ele ele	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	arks
	SURFACE ELEVATION 42	28	Stratu Eleva	Stratum Depth, ft	Depth Scale, f	Sample No.	Samp	Samp	Grou	Stanc	Moist	Pocke PP-ts	Remarks
Brown	oil (Visual) n and gray, moist, medium stiff ' CLAY LOAM No. 2) A-6	$\overline{to stiff} \Gamma$	427.7	0.3	-	1	SS	X		4-5-5	25.8	3.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					5—	2	SS	X		4-5-6	22.0	3.5	
					3 -	3	SS	X	Ē	5-5-6	23.1	2.75	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS	X		4-4-4		1.0	Traffic control with flagmen required
CLAY (Lab N	n and gray, moist, medium stiff No. 4) A-7-6 n of Test Boring at 15.0 ft	SILTY	415.0	13.0	15	5	SS		立 廢	5-5-5	23.6	2.25	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools **6.5** ft. ∑ At Completion
 11.5 ft.

▼ After ____ hours

___ ft. **12.5** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

CLIENT American Structurepoint, Inc. BORING# RB-25 PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ **260+00 Line "D"** PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and V	Varrick C	Counti	ies, In	dian	a					OFFSET_		8 ft Right
	DRILLING and SAMF	DRMATI	ON		_					Т	EST DA	ATA	
Date Started _	1/15/07	Hammer W	t		140	lbs.							
Date Completed	1/15/07	Hammer Dr	ор			- 11							
Drill Foreman	T. Smoot	Spoon Sam	pler OD		2.0	in.				est, nts			
Inspector	B. Kleeman	Rock Core I	Dia			in.				on Te emel	%	l ia	
Boring Method	HSA-Truck	Shelby Tube	e OD			in.		nics phics		etratic . Incr	ent, %	omet	
So	DIL CLASSIFICATION		Stratum Elevation, ft	Stratum Depth, ft	ith le, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
SUR	FACE ELEVATION 430		Strat Elev	Stra Dep	Depth Scale, f	San No.	Sarr	San	Gro	Star Blov	Mois	Poc PP-1	Ren
Brown, moist	, 0.9 ft Crushed Limestone		428.0	2.0	-	1	SS	X		4-4-4		2.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
(Lab No. 1) A	-7-6				5—	2	SS	X		4-5-6		2.75	
					- - -	3	SS	X		5-5-6	20.7	3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10	4	SS	X		5-7-7		3.25	Traffic control with flagmen required
									商				
Bottom of Te	st Boring at 15.0 ft		415.0	15.0	15—	5	SS			4-4-6		4.0	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. ∑ At Completion

▼ After ____ hours

11.5 ft. --_ ft.

13.0 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

CLIENT American Structurepoint, Inc. BORING# **RB-26** PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ STATION ______**88+50 Line "PR-C"** PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and	Warrick	Count	ies, In	а					FFSET_	-	Centerline	
	DRILLING and SAI	MPLING INF	ORMATI	ION		_					Т	EST DA	ATA
Date Started	1/17/07	Hammer W	/t.		140	lbs.							
Date Completed	1/17/07	Hammer D	rop		30	- 11							
Drill Foreman _	T. Smoot	Spoon San	npler OD		2.0	in.				est, nts			
Inspector	B. Kleeman	Rock Core	Dia			in.				on Te		<u></u>	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		nics phics		tratic	ent, %	omet	
	OIL CLASSIFICATION ACE ELEVATION 450	.4	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
Brown and gray SILTY CLAY I (Lab No. 1) A	ay, moist, medium stiff t LOAM	to stiff	<u>бы</u> 450.1	0.3	- - - - -	1	SS)	3-3-4	26.4	3.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					5—	2	SS	X		4-4-5		1.5	
			442.4	8.0	- - -	3	SS	X		4-5-7		2.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown, moist, (Lab No. 2) A	stiff SILTY CLAY 6				10	4	SS	X		6-6-7		3.0	
Brown, weath	ered SHALE		436.9 436.0	13.5 14.4		5	SS	X	翼	36-50/0.4'			
Bottom of Tes	at 14.4 ft												INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

 ∑ At Completion
 ▼ After ____ hours

None ft. Dry ft.

> ____ ft. **12.5** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

CLIENT American Structurepoint, Inc. BORING # **RB-27** PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ STATION ______93+00 Line "PR-C" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and Warr	ick Count	ies, In	diana	a					OFFSET_		Centerline
DR	ILLING and SAMPLING	INFORMATI	ION		_					Т	EST DA	ATA
Date Started 1/17	7/07 Hamn	ner Wt.		140	lbs.							
Date Completed 1/17	'/07 Hamn	ner Drop		30	ll.							
Drill Foreman T. S	moot Spoor	n Sampler OD		2.0	in.				est, nts			
InspectorB. K	Kleeman Rock	Core Dia			in.				on Te emer	%	ū	
Boring Method HSA	A-ATV Shelby	y Tube OD			in.		hics		etratic . Incre	ent, %	omet	
	SSIFICATION	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
_	EVATION 450.7	Stra		Sca	Sar So So	Sar	Sar Re ar	9	Sta	Mo	Poc	_
Brown and light gray, CLAY (Lab No. 1) A-7-6	moist, medium stiff SIL	TY 450.4	0.3		1	SS			2-3-3	19.6	1.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
				5	2	SS	X		4-4-4	23.1	1.5	
		442.7	8.0	-	3	SS	X		3-3-4	22.1	1.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown and light gray, LOAM (Lab No. 2) A-6	moist, stiff SILTY CLAY	, —]		10	4	SS	X		5-5-7		2.0	
Brown, weathered SH Bottom of Test Boring	HALE	437.2 436.7	13.5 14.0	- - - - - -	5	SS	×	園	50/0.5'			
	•											INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. ∑ At Completion
 Dry ft.

▼ After ____ hours

____ ft. **13.0** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

CLIENT American Structurepoint, Inc. BORING# **RB-28** PROJECT NAME Proposed Interstate 69 Design/Build Project JOB # _____ 86.00481.0181 97+00 Line "PR-C" PROJECT LOCATION Interstate 64 to State Road 68 STATION ____

	Gibson and	Warrick (Count	ies, In	dian	<u>a</u>				OI	FFSET_		Centerline
	DRILLING and SAI	MPLING INF	ORMATI	ION		-					Т	EST DA	ATA
Date Started	1/17/07	Hammer W	/t.		140	lbs.							
Date Comple		Hammer D			30								
Drill Forema		Spoon San)						st, ts			
Inspector _	B. Kleeman	Rock Core								n Te imer		<u></u>	
Boring Metho	od HSA-ATV	Shelby Tub	e OD			in.	40	phics aphics	_	netratio in. Incre	ntent, %	tromete	
	SOIL CLASSIFICATION		Stratum Elevation, ft	um h, ft), ft	ole	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	arks
_	SURFACE ELEVATION 451	.6	Stratu	Stratum Depth, ft	Depth Scale, 1	Sample No.	Sam	Sam	Grou	Stand	Moist	Pock PP-ts	Remarks
Brown a	(Visual) and gray, moist, soft to stiff SII b. 1) A-7-6	LTY CLAY	451.3	0.3	- - - -	1	SS	X		2-2-3		1.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					5—	2	SS			5-5-6	23.6	2.5	
					- - -	3	SS	X		5-6-6	32.8	2.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
-					10-	4	SS	X		6-6-7		2.5	
	everely weathered SHALE		438.1 437.1	13.5 14.5	_	5	SS	X	繭	37-50/0.5'			
Bottom	of Test Boring at 14.5 ft												INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. ∑ At Completion

▼ After ____ hours

Dry ft.

____ ft. **13.0** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-29** CLIENT ____ Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# PROJECT NAME 101+00 Line "PR-C" Interstate 64 to State Road 68 PROJECT LOCATION STATION

PROJECT LOCATIO	N <u>Interstate 64 to Stat</u>	<u>e Road</u>	68							STATION		101+00 Line "PR-C
	Gibson and Warrick	Count	ies, In	<u>idiana</u>	a					OFFSET_		Centerline
	DRILLING and SAMPLING IN	FORMAT	ION		F					Т	EST DA	ATA
Date Started _ Date Completed Drill Foreman Inspector Boring Method	B. Kleeman Rock Cor	Drop _ ampler OD		30 2.0 	in. in. in.		ohics aphics		Standard Penetration Test, Blows per 6 in. Increments	itent, %	irometer	
	DIL CLASSIFICATION ACE ELEVATION 444.1	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Per Blows per 6 i	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
Topsoil (Visua Brown, moist (Lab No. 1) A	soft SILTY CLAY	/ 443.8 441.1	3.0		1	SS	X		1-2-2	26.2	0.25	Ground surface elevation provided by Bernamdin-Lochmueller & Associates
Brown and gr SILTY CLAY (Lab No. 2) A	ray, moist, medium stiff to stiff LOAM -6			5-	2	SS	X		3-3-4	23.0	1.5	
				-	3	SS	X		5-5-6		3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
				10	4	SS	X		4-4-4	22.2	3.0	
SANDSTONE	ay, severely weathered Est Boring at 14.1 ft	430.6 430.0	13.5 14.1		5,	SS	X		30-50/0.1'			INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. Dry ft.

 ∑ At Completion
 ▼ After ____ hours

--_ ft. **13.0** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-30** CLIENT_____ Proposed Interstate 69 Design/Build Project PROJECT NAME _____ JOB# 86.00481.0181 STATION ______ 105+00 Line "PR-C" PROJECT LOCATION Interstate 64 to State Road 68

Gibson and				diana	a a					OFFSET		Centerline
			_									
DRILLING and SA					ſ					<u> </u>	EST DA	ATA
Date Started 1/17/07	Hammer W											
Date Completed 1/18/07	Hammer D				- 11							
Drill Foreman T. Smoot	Spoon San								Test			
Inspector B. Kleeman	Rock Core	_					Ś		tion .	%	eter	
Boring Method HSA-ATV	Shelby Tub	e OD			in.		ohics aphic		netrai n. Inc	ltent,	rome	
SOIL CLASSIFICATION		, #				Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	
COLE CEASON ICATION		atior	tum th, ft	e,# E	Sample No.	ble	over	nndv	ndarc vs pe	sture	ket F	Remarks
SURFACE ELEVATION 439	9.8	Stratum Elevation, 1	Stratum Depth, ft	Depth Scale, 1	San No.	San	San	Gro	Star Blov	Mois	Poc PP.	Ren
+ + \Topsoil (Visual) + + Light gray and brown, very moist, so		439.5	0.3				Ш	¥				Ground surface elevation provided by
+ + Light gray and brown, very moist, sol + + (Lab No. 7) A-4	t SIL I				1	SS	X		1-2-2	24.1	0.75	Bernarndin-Lochmueller &
		436.8	3.0									Associates
- ++ Brown and light gray, slightly moist, r ++ SILT	nedium stiff			\exists	2	SS	V		4-4-5		3.5	
+ + (Lab No. 9) A-4		434.3	5.5	5-								Boring was backfilled in
Brown, moist, medium stiff SILTY CL	AY LOAM				3	SS	\bigvee	ļ.	4-4-5	22.0	3.0	accordance with the INDOT
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		431.8	8.0				Λ					Aquifer Protection Guidelines
Reddish brown, moist, hard SILTY C	LAY			7	4	SS			7 17 00			
(Lab No. 1) A-7-6 Reddish brown, severely weathered		430.3	9.5	10	4	33	X		7-17-20			
SANDSTONE SANDSTONE				'								
1												
1		426.3	13.5					闣				
Gray, weathered SHALE		425.9	13.9		_5_	SS	imes	-	50/0.4'			
Bottom of Test Boring at 13.9 ft												INDOT Proj. No. IM-069-0
												(004) INDOT Des. No. 0500436
												INDO1 Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

13.5 ft.

 ∑ At Completion
 Dry ft. **0.9** ft. ▼ After 24 hours

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-31** CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION ______ 109+00 Line "PR-C" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and				dian	а					OFFSET		20 ft Right
	DRILLING and SAM	ORMATI	ON		_					Т	EST DA	ATA	
Date Started Date Completed Drill Foreman Inspector Boring Method	1/17/07 1/18/07 T. Smoot B. Kleeman HSA-ATV	Hammer W Hammer D Spoon Sam Rock Core Shelby Tub	rop _ npler OD Dia		30 2.0 	in. in. in.		ohics aphics		Standard Penetration Test, Blows per 6 in. Increments	tent, %	Penetrometer	
	DIL CLASSIFICATION FACE ELEVATION 442	!	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Per Blows per 6 i	Moisture Content,	Pocket Pene PP-tsf	Remarks
(Lab No. 2) A	, medium stiff SILTY CLA	-	441.7 440.0	0.3 2.0	11111	1	SS	X	Ţ	4-4-4	20.7	3.0	Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc.
- (Lab No. 1) A			436.5	5.5	5-	2	SS	X		4-4-4	20.7	2.5	Boring was backfilled in
SILTY CLAY (Lab No. 4) A	n and gray, moist, mediu -7-6	JM Stiπ				3	SS	X		4-4-5		2.25	accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS	X	題	3-3-4		2.5	
Brown, weath Bottom of Tes	ered SHALE st Boring at 14.1 ft		428.5 427.9	13.5 14.1		5 ,	SS	X		50/0.6'			INDOT Proj. No. IM-069-0
													(004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 Dry ft. ▼ After 24 hours **2.4** ft. **9.7** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

CLIENT	American Structurepoint, Inc.	BORING #	RB-32
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	113+00 Line "PR-C"
_	Gibson and Warrick Counties, Indiana	OFFSET	12 ft Right

PROJECT LOCATION	Gibson and Warrick (FFSET_		12 ft Right							
D	RILLING and SAMPLING INFO	ORMATI	ON							Т	EST DA	ATA
Date Completed Drill Foreman Inspector S.	Hammer W Hoff Hammer Di Carroll Spoon Sam Marcum Rock Core SA-Truck Shelby Tub	rop _ npler OD Dia		i	n. in. in.		ohics aphics		Standard Penetration Test, Blows per 6 in. Increments	itent, %	irometer	
	ASSIFICATION ELEVATION 439	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Per Blows per 6 i	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
(Visual) Brown, slightly mois (FILL) (Lab No. 2) A-6	Crushed Limestone st, very stiff, silty clay loam	437.3 435.5	1.7 3.5	1	1	SS	X		5-9-10	16.4		Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc.
Brown and gray, mo (Lab No. 1) A-7-6	oist, stiff SILTY CLAY	433.5	5.5	5	3	SS SS	X		4-5-6 3-4-4	19.5	3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
				10	4	SS	X		3-3-4			Traffic control required
Brown and gray, mo (Lab No. 1) A-7-6 Bottom of Test Boria	pist, stiff SILTY CLAY	427.0	15.0	15	5	SS	X	M	5-6-8			INDOT Proj. No. IM-069-0 (004)
												INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

▼ After ____ hours ☑ Cave Depth

None ft.

Dry ft. ___ ft.

12.0 ft.

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-33** CLIENT_____ PROJECT NAME ____ Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 20+00 "S-2-A" PROJECT LOCATION Interstate 64 to State Road 68 STATION

	Gibson and				OFFSET	· -	Centerline						
	DRILLING and SA										-	EST DA	
Date Started _	1/11/07	Hammer W			140	lbs.						<u> </u>	
Date Completed	1/12/07	Hammer D	rop _		30	in.							
Drill Foreman	T. Smoot	Spoon San	npler OD		2.0	in.				est, nts			
Inspector	S. Marcum	Rock Core	Dia			in.				on Te	%	ь Б	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.	40	phics aphics		netratic n. Incr	rtent, %	Penetrometer	
SC	DIL CLASSIFICATION		Stratum Elevation, ft	m, ft	, ft	e	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	et Pene f	īks
SURF	ACE ELEVATION 483	3.6		Stratum Depth, ft	Depth Scale, f	Sample No.	Samp	Samp	Grour	Stand	Moist	Pocket PP-tsf	Remarks
Brown and da stiff SILTY CL (Lab No. 2) A	irk brown, moist, soft to AY LOAM	<i></i> _/ medium	483.3	0.3		1	SS	X		2-2-3		2.25	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					5—	2	SS			2-3-3	26.3	2.5	
					,	3	SS	X	Ţ	2-3-5		2.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS	X	繭	4-5-5	22.0	3.25	
Brown, gray a CLAY (Lab No. 1) A	ind dark brown, moist, s	stiff SILTY	471.6	12.0	15—	5	SS	X		3-4-8	20.0	3.5	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
	ely weathered SHALE at Boring at 19.0 ft	<i>_</i>	465.1 464.6	18.5 19.0	1 1 1	6	SS	×		50/0.5'			INDOT Des. No. 0500450

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger RC - Rock Core

CU - Cuttings CT - Continuous Tube Depth to Groundwater

Noted on Drilling Tools

 ∑ At Completion
 Dry ft. ▼ After 24 hours **6.2** ft.

None ft.

9.6 ft.

Boring Method HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger Page 1

American Structurepoint, Inc. BORING# **RB-34** CLIENT_____ PROJECT NAME ____ Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 23+50 "S-2-A" PROJECT LOCATION Interstate 64 to State Road 68 STATION ___

	Gibson and	l Warrick	Count	ies, In	OF	FSET_		Centerline					
	DRILLING and SA	MPLING INF	ORMATI	ON		_					Т	EST DA	ATA
Date Started	1/11/07	Hammer W	/t.		140	lbs.							
Date Completed	1/12/07	Hammer D			30								
Drill Foreman	T. Smoot	Spoon San								st, ts			
Inspector	S. Marcum	Rock Core	Dia.			in.				n Te mer		_	
Boring Method	HSA-ATV	Shelby Tub	e OD			_in.		phics		etratio	tent, %	romete	
So	DIL CLASSIFICATION		Stratum Elevation, ft	E #,	_ #,	e	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	ırks
SURF	ACE ELEVATION 490).5	Stratu Elevat	Stratum Depth, ft	Depth Scale, 1	Sample No.	Samp	Samp	Grour	Stand Blows	Moist	Pocke PP-ts	Remarks
(Lab No. 2) A	, very stiff SILTY CLAY	1	490.3 489.0	0.2 1.5		1	SS			8-10-12			Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					-	2	SS			16-22-21			
-reddish brow	n and gray below 6.0 ft				5-	3	SS			6-10-14			Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS	X		6-7-14			
					15—	5	SS	×	Ā	50/0.5'			INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
					20-	6	SS	X	200	37-50/0.4'			
-gray below 2	22.0 ft st Boring at 23.8 ft		466.7	23.8	-	7	SS	×-		50/0.3'			Auger refusal at 23.8 ft

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

 ∑ At Completion
 ▼ After 24 hours

None ft.

Dry ft. **12.8** ft. **18.5** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

CLIENT American Structurepoint, Inc. BORING# **RB-35** PROJECT NAME Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 STATION _____**27+00 "S-2-A-PR"** PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and		DFFSET_		Centerline								
	DRILLING and SAN	IPLING INFO	ORMATI	ON		_					Т	EST DA	ATA
Date Started1	1/11/07	Hammer W	/t		140	lbs.							
Date Completed _1	1/11/07	Hammer D	rop _			- 11							
Drill Foreman	Γ. Smoot	Spoon Sam	npler OD		2.0	in.				est, nts			
Inspector	S. Marcum	Rock Core	Dia			in.				on Te eme	%	e e	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		hics ohics		etratic . Incr	ent, 9	omet	
	CLASSIFICATION		Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
	E ELEVATION 487.	5	Stra		Sca	S Sa	Sal	Re <u>g</u>	Ď	Sta	§ V	88	
Topsoil (Visual) Dark brown and g	gray, severely weather	ered	487.3	0.2	- - - -	1	SS			36-50/0.4'			Ground surface elevation provided by Bernarndin-Lochmueller & Associates
-gray below 3.0 ft	t				_ 	2	SS			50/0.4'			
					5—	3	SS	X		50/0.5'			Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS	× -		50/0.3'			
					15—	5	SS	×		50/0.3'			INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
Bottom of Test Bo	oring at 18.7 ft		468.8	18.7	-	6	SS	×		50/0.2'			INDO 1 Des. No. 0300430

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

--_ ft.

Noted on Drilling Tools None ft.

Dry ft. ▼ After ____ hours --_ ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-36** CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 STATION _____**29+50 "S-2-A-PR"** PROJECT LOCATION Interstate 64 to State Road 68

11100201200711	Gibson and			OFFSET	·	Centerline							
	DRILLING and SA										-	EST DA	
Date Started Date Completed Drill Foreman Inspector	1/11/07 1/12/07 T. Smoot S. Marcum	Hammer W Hammer D Spoon San Rock Core	rop _ npler OD		30 2.0	in. in.				n Test, ments		į	
Boring Method	HSA-ATV	Shelby Tub	e OD			· II	a)	phics aphics	٠	netration in. Incre	ntent, %	Penetrometer	
	OIL CLASSIFICATION		Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Pene PP-tsf	Remarks
	FACE ELEVATION 477	7.5			Sca	Sar	Sar	Sar	Gro	Sta	Mo	9 G	_
Topsoil (Vis Brown and SILTY CLA' (Lab No.2)	gray, moist, soft to mediu	<i> j</i> ım stiff	477.1	0.4	- - -	1	SS	X	Ť	1-2-2	31.3	0.75	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
			472.0	5.5	5—	2	SS			3-3-5	26.2	1.25	
Brown, gray CLAY LOAI (Lab No. 2)		stiff SILTY	469.5	8.0	-	3	SS	X		2-7-7		2.75	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown, moi	st, stiff SILTY CLAY A-7-6		464.0	13.5	10-	4	SS	X	瀬	4-5-6		3.0	
Brown and SHALE	lark brown, severely wea	thered	404.0	13.5	15—	5	SS	X		30-50/0.5'			INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
Bottom of T	est Boring at 20.0 ft		457.5	20.0	20—	6	SS	X		30-50/0.4'			

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 Dry ft. ▼ After 24 hours

2.8 ft. **9.2** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

CLIENT American Structurepoint, Inc.

PROJECT NAME Proposed Interstate 69 Design/Build Project

PROJECT LOCATION Interstate 64 to State Road 68

Gibson and Warrick Counties, Indiana

BORING # RB-37

308 86.00481.0181

STATION 32+00 "S-2-A-PR"

Centerline

		Gibson and	Warrick (FFSET		Centerline						
		DRILLING and SA										_	EST DA	
Da	ate Started	1/10/07	Hammer W			140	lbs.						<u> </u>	
Da	te Completed	1/11/07	Hammer D	rop _		30	in.							
Dr	ill Foreman _	T. Smoot	Spoon San	npler OD		2.0	in.				est, ints			
Ins	spector	S. Marcum	Rock Core	Dia			in.				on T eme	%	e e	
Вс	oring Method	HSA-ATV	Shelby Tub				in.	Φ	Sampler Graphics Recovery Graphics	_	Standard Penetration Test, Blows per 6 in. Increments	ntent, 9	Penetrometer	
	so	IL CLASSIFICATION		Stratum Elevation, ft	um h, ft	h 9, ft	ole	Sample Type	oler Gra every G	Groundwater	dard Pe s per 6	Moisture Content,	et Pene	arks
	•	ACE ELEVATION 468	3.8		Stratum Depth, ft	Depth Scale, 1	Sample No.	Sam] Sam] Recc	Grou	Stand	Mois	Pocket PP-tsf	Remarks
	Topsoil (Visua Brown, gray and to very stiff SIL (Lab No. 2) A-	nd dark brown, moist, r TY CLAY LOAM	nedium stiff	468.4	0.4	-	1	SS	X		2-4-5	27.7	2.25	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
						5 -	2	SS	X	Ţ	6-8-8		3.5	
						, - - -	3	SS	X		6-7-8	20.0	3.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
	Brown and gra	y, severely weathered	 SHALE	459.8	9.0	10-	4	SS	X		16-17-35			
							5	SS	X	题	25-46-50/0.4'			
	-gray below 17	7.0. f f				15— - - -								INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
		t Boring at 19.4 ft		449.4	19.4	-	6	SS	X		47-50/0.4'			Auger refusal at 19.4 ft

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

● Noted on Drilling Tools None ft.

 $\begin{tabular}{lll} \searrow At Completion & $\underline{\begin{tabular}{c} Dry \\ χ After $\underline{\begin{tabular}{c} 24 \\ \hline \end{tabular}}$ hours & $\frac{\begin{tabular}{c} Dry \\ \hline \end{tabular}$ ft. \\ \end{tabular}$

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

Page **1** of

American Structurepoint, Inc. BORING# **RB-38** CLIENT_____ Proposed Interstate 69 Design/Build Project PROJECT NAME _____ JOB# 86.00481.0181 43+00 "S-2-A-PR" PROJECT LOCATION Interstate 64 to State Road 68 STATION

Gibson a	Gibson and Warrick Counties, Indiana													
DRILLING and	SAMPLING INF	ORMAT	ION		_					Т	EST DA	ATA		
Date Started 1/10/07	Hammer V	√t.		140	lbs.									
Date Completed	_ _ Hammer D	rop _			- 11									
Drill Foreman T. Smoot	_ Spoon Sar	npler OD		2.0	in.				est, nts					
Inspector S. Marcum	_ Rock Core	Dia			in.				on Te	%	<u></u>			
Boring Method HSA-ATV	_ Shelby Tub	e OD			in.		Sics		tratic	nt, %	met			
		#	I			ype	3rapt Grap	ater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf			
SOIL CLASSIFICATIO	N .	fion,	h, ff	9, ff	ole	ole T	oler (ndwa	dard s per	ture (et Pe	arks		
SURFACE ELEVATION	444	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, f	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Stand	Moist	Pock PP-ts	Remarks		
+ + Topsoil (Visual) + + Light brown, very moist, soft SILT - + + (Lab No. 7) A-4	/	443.7	0.3	-	1	SS	X	Ţ	2-2-2		0.5	Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by		
Brown, gray and black, moist, me SILTY CLAY (Lab No. 1) A-7-6	dium stiff	441.0	3.0	 	2	SS	X		3-3-4		3.0	American Structurepoint, Inc.		
(Lab No. 1) A-7-0		400.0		5	3	SS	X	瀬	5-5-5		2.75	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines		
Brown and gray, moist, very stiff (Lab No. 4) A-7-6	SILTY CLAY	436.0	8.0	10-	4	SS	X	Ē	3-10-15		2.75			
Gray, severely weathered SHALE		433.0	11.0	-										
		429.0	15.0	- - - 15—	5	SS			17-20-50					
Bottom of Test Boring at 15.0 ft												Auger refusal at 15.0 ft		
												INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436		

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools **8.5** ft.

 ∑ At Completion
 Dry ft. **2.3** ft.

▼ After 24 hours

Boring Method

5.2 ft.

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

CLIENT	American Structurepoint, Inc.	BORING#	RB-39
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION _	Interstate 64 to State Road 68	STATION	46+00 Line "S-2-C"
	Gibson and Warrick Counties, Indiana	OFFSET	10 ft Right

	Gibson and		OFFSET		10 ft Right								
	DRILLING and SAI	MPLING INFO	ORMATI	ON		_					Т	EST DA	ATA
Date Started Date Completed Drill Foreman Inspector Boring Method	1/4/07 1/4/07 C. Carroll S. Marcum HSA-Truck	Hammer W Hammer D Spoon Sam Rock Core Shelby Tub	rop _ npler OD Dia		30 2.0 	in. in. in.		phics aphics		Standard Penetration Test, Blows per 6 in. Increments	ntent, %	trometer	
	DIL CLASSIFICATION ACE ELEVATION 451	.3	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Per Blows per 6 i	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
	, 0.5 ft Crushed Limesto medium stiff SILTY CL -6		450.3	1.0		1	SS	X		4-4-5		2.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
						2	SS			3-4-4		2.0	
Brown, moist, (Lab No. 1) A	, stiff SILTY CLAY -7-6		445.8	5.5	5	3	SS	X	M	5-5-7			Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Bottom of Tes	st Boring at 10.0 ft		441.3	10.0	10	4	SS	X	_	6-7-6			Traffic control required
													INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

___ ft.

8.0 ft.

Noted on Drilling Tools None ft. Dry ft.

▼ After ____ hours

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

CLIENT	American Structurepoint, Inc.	BORING #	RB-40
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION _	Interstate 64 to State Road 68	STATION	22+00 Line "T-1-A"
_	Gibson and Warrick Counties, Indiana	OFFSET	10 ft Right

	Gibson and		OFFSET		10 ft Right								
	DRILLING and SA	MPLING INF	ORMATI	ON							Т	EST DA	ATA
Date Started _	1/16/07	Hammer W	/t		140	lbs.							
Date Completed	1/16/07	Hammer D	rop _										
Drill Foreman	T. Smoot	Spoon San	npler OD		2.0	in.				est, nts			
Inspector	B. Kleeman	Rock Core	Dia			in.				eme	%	ja Ja	
Boring Method	HSA-Truck	Shelby Tub	e OD			in.		hics phics		etrati	ent, 9	omet	
S	OIL CLASSIFICATION		Stratum Elevation, ft	Stratum Depth, ft	th le, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
SURF	FACE ELEVATION 467	7.7	Straf	Stra Dep	Depth Scale, f	San No.	San	San	Gro	Star Blov	Mois	Poc	Ren
Light brown a		1	467.4	0.3		1	SS			4-5-5		1.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
(Lab No. 1) A	1 -7-0				=	2	ss			4-7-10		3.5	
Brown to gra	y, severely weathered Sl	 HALE	461.7	6.0	5	3	SS		園	20-47-50			Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Bottom of Te	st Boring at 10.0 ft		457.7	10.0	10-	4	SS	X		26-35-45			Traffic control required
BOLLOTT OF TE	St Boiling at 10.0 It												INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

▼ After ____ hours

Dry ft. ___ ft.

7.5 ft.

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-41 CLIENT _____ Proposed Interstate 69 Design/Build Project PROJECT NAME _ JOB# 86.00481.0181 3+00 Line "LSR3" PROJECT LOCATION Interstate 64 to State Road 68 STATION

	IECT LOCATION	·		STATION		Contarline LOIS								
		Gibson and	i warrick	Count	ies, in	dian	<u>a</u>					OFFSET_		Centerline
		DRILLING and SA	MPLING INF	ORMAT	ON		ſi						EST DA	ATA
Da	ate Started	1/18/07	Hammer W	√t		140	lbs.							
Da	ate Completed	1/19/07	Hammer D	rop _		30	in.							
Dr	ill Foreman _	T. Smoot	Spoon San	npler OD		2.0	in.				est, nts			
Ins	spector	B. Kleeman	Rock Core	Dia			in.				on Te	%	e e	
Вс	oring Method	HSA-ATV	Shelby Tub	e OD			in.		Sici		tratic	int, %	met	
				#	ı			ре	Graph	ter	ene 6 in.	onte	netro	
	SO	IL CLASSIFICATION		on, f	ε #.	¥	ө	e Ty	er G	dwa	ard F	l e	t Pe	s Y
	SURFA	ACE ELEVATION 434	l.0	Stratum Elevation,	Stratum Depth, ft	Depth Scale, 1	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
	SILTY CLAY I	ay, moist, medium stiff	to stiff	433.3	0.7	- - - -	1	SS	X	Ť	3-3-4	23.4	2.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
	(Lab No. 2) A-6					- - - 5—	2	SS	X	覆	4-5-5	22.3	3.0	Associates
						-	3	SS	X		5-5-6		2.75	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
				424.0	10.0	- - - 10-	4	SS	X		4-4-5		2.75	
	DOMONTO TES	t Boring at 10.0 ft												INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube Depth to Groundwater

Noted on Drilling Tools None ft. Dry ft.

 ∑ At Completion
 ▼ After 24 hours

1.2 ft. **4.1** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-42** CLIENT_____ PROJECT NAME ____ Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 7+00 Line "LSR3" PROJECT LOCATION Interstate 64 to State Road 68 STATION ____

		Gibson and Warrick Counties, Indiana												Centerline
	DRILLING and SAMPLING INFORMATION										TEST DATA			
Date S	Started	1/18/07	Hammer W	/t.		140	lbs.							
	Completed	1/19/07	Hammer D			30								
	oreman	T. Smoot	Spoon San)						st, Its			
Inspec	ctor	B. Kleeman	Rock Core								n Te mer		<u></u>	
Boring	Method	HSA-ATV	Shelby Tub	e OD			in.	40	phics aphics		netratio n. Incre	ntent, %	tromete	
	SO	IL CLASSIFICATION		Stratum Elevation, ft	E, t	#;#	ole	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	arks
		ACE ELEVATION 436	.5		Stratum Depth, ft	Depth Scale, 1	Sample No.	Samp	Samp	Grou	Stanc	Moist	Pocke PP-ts	Remarks
Bro	opsoil (Visua own and gra LTY CLAY L ab No. 2) A-	ay, moist, medium stiff i OAM	to stiff	435.8	0.7	- - - - -	1	SS	X	Ā	2-3-6		2.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					- - 5-	2	SS	X		4-5-6		2.25		
				428.5	8.0	- - -	3	SS	X	쩳	5-6-7		3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
	rown and da _AY ab No. 1) A-	rk brown, moist, very st 7-6	iff SILTY			10-	4	SS	X		9-14-17		4.0	
		ly weathered SHALE t Boring at 14.1 ft		423.0 422.4	13.5 14.1		5	SS	X		50/0.6'			
														INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After 24 hours

Dry ft. **2.8** ft.

6.2 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# RB-43 CLIENT _____ Proposed Interstate 69 Design/Build Project 86.00481.0181 PROJECT NAME JOB# 10+00 Line LSR3" PROJECT LOCATION Interstate 64 to State Road 68 STATION

ROJECT LOCATION Interstate 64 to State Road 68													10+00 Line Lara		
	Gibson and	d Warrick	Count	ies, In	dian	<u>a</u>					OFFSET		Centerline		
DRILLING and SAMPLING INFORMATION											TEST DATA				
Date Started	1/18/07	Hammer W	/t.		140	lbs.									
Date Completed	1/19/07	Hammer D				II									
Drill Foreman	T. Smoot	Spoon San	npler OD		2.0	in.				est, nts					
Inspector	S. Marcum	Rock Core	Dia			in.				on Te emel		 			
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		nics		tratic	ent, %	omet			
			#			\blacksquare	ype	Srapt	ater	Pene 6 in.	Conte	netro			
SC	DIL CLASSIFICATION		fion,	um n, ft	, L	ole	ole T	oler (ndwa	dard s per	ture	et Pe	arks		
SURF	ACE ELEVATION 42	8.3	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, f	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks		
Topsoil (Visua Brown and gr CLAY (Lab No. 1) A	ay, very moist, very sof	TSILTY ——	427.6	3.0	- - -	1	SS	X	南	1-1-1	26.3	0.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates		
SILTY CLAY	Gray and brown, moist, soft to medium stiff					2	SS			2-2-2	23.7	0.75			
(Lab No. 2) A	-6		420.2	0.0	5—	3	SS	X	∇	2-4-5	19.1	4.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines		
CLAY (Lab No. 1) A	ay, very moist, very sof -7-6 st Boring at 10.0 ft	t SILTY	420.3	10.0	10-	4	SS	X	•	2-1-2	32.4	2.0			
Bottom of Tes	st Boring at 10.0 ft												INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436		

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools 8.5 ft. **7.8** ft.

 ∑ At Completion
 ▼ After 24 hours

1.3 ft. **3.0** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

CLIENT_	American Structurepoint, Inc.	BORING #	RB-44
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	11+00 Ramp "A-1"
	Gibson and Warrick Counties, Indiana	OFFSET_	12 ft Right

Gibson and Warrick Counties, Indiana														12 ft Right		
DRILLING and SAMPLING INFORMATION											TEST DATA					
Dai Dril Ins	te Started te Completed Il Foreman pector ring Method	1/17/07 1/18/07 T. Smoot B. Kleeman HSA-Truck	Hammer Warner Di Spoon Sam Rock Core Shelby Tub	rop _ npler OD Dia		i	n. in. in.		ohics aphics		Standard Penetration Test, Blows per 6 in. Increments	itent, %	irometer			
		IL CLASSIFICATION ACE ELEVATION 45	4	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Per Blows per 6 i	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks		
	NTopsoil (Visual Brown, moist, loam (FILL) (Lab No. 2) A-) medium stiff to very sti 6	ff, silty clay	448.5 447.3	0.3 5.5 6.7	_	2 3 3	ss ss ss	33 2	Gr	が 菌 4-4-3 13-10-11 15-50/0.2 ^t		3.0	Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc. Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines Auger refusal at 6.7 ft Traffic control required INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436		

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

Dry ft. ▼ After 24 hours **Dry** ft. **5.0** ft.

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

RB-44-A American Structurepoint, Inc. BORING# CLIENT _____ 86.00481.0181 Proposed Interstate 69 Design/Build Project PROJECT NAME JOB# 11+10 Ramp "A-1" Interstate 64 to State Road 68 PROJECT LOCATION STATION

PRO	PROJECT LOCATION Interstate 64 to State Road 68													11+10 Ramp "A-1"		
Gibson and Warrick Counties, Indiana											OFFSET		12 ft Right			
	DRILLING and SAMPLING INFORMATION											TEST DATA				
Da Dr Ins	Date Completed 1/18/07 Ham Drill Foreman T. Smoot Spo Inspector B. Kleeman Roce		Hammer D Spoon San Rock Core	Hammer Wt. 140 lbs. Hammer Drop 30 in. Spoon Sampler OD 2.0 in. Rock Core Dia. in. Shelby Tube OD in.				phics aphics	phics aphics		Standard Penetration Test, Blows per 6 in. Increments	itent, %	rometer			
	SO	IL CLASSIFICATION		Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	ndard Pe ws per 6	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks		
	SURF	ACE ELEVATION 45	54	Stra	Stra	Dep Sca	San No.	San	San	Gro	Star Blov	Mo	P. P.	Ren		
	Blank Drill													Ground surface elevation provided by Bernarndin-Lochmueller & Associates		
	Brown, moist, (Lab No. 2) A-	very stiff, silty clay loa 6	m (FILL)	. 445.5	8.5	5	1	SS	X		5-9-8		2.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines		
1 + -	Gray, wet, ver (Lab No. 6) A-			441.5	12.5	_ _ _	2	SS	X	璃	2-2-1		0.25			
+	Bottom of Tes	t Boring at 15.0 ft		439.0	15.0	15—								INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436		

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After 24 hours

Dry ft. Dry ft. **12.3** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# RB-45 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION _____**15+00 Ramp "B-1"** PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and				dian	a					OFFSET		Centerline
	DRILLING and SAM	MPLING INFO	ORMATI	ON							T	EST DA	ATA
Date Started	1/11/07 1/12/07 T. Smoot S. Marcum HSA-ATV	Hammer W Hammer Di Spoon Sam Rock Core Shelby Tub	rop _ npler OD Dia		30 2.0 	in. in. in.		nics bhics		etration Test, Increments	ent, %	ometer	
	DIL CLASSIFICATION ACE ELEVATION 458.	0	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
SILTY CLAY (Lab No. 2) A	ay, moist, medium stiff t LOAM		457.6	0.4		1	SS	X	Ā	3-3-4		1.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
- Diack Stream	ig noted below 5.0 it				5-	2	SS			3-5-6	25.9	1.25	Boring was backfilled in accordance with the INDOT
			448.5	9.5		4	SS SS	X 	飁	3-5-5 8-10-15		1.25	Aquifer Protection Guidelines
SANDSTONE	ay, severely weathered , severely weathered SH	HALE	446.0	12.0	10	5	SS	X		50/0.4'			
Bottom of Tes	st Boring at 18.9 ft		439.1	18.9	15—	6	SS	×		50/0.4'			INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

7.1 ft.

 ∑ At Completion
 Dry ft. **2.9** ft.

▼ After 24 hours

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. **RB-46** BORING# CLIENT Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# PROJECT NAME 19+00 Ramp "B-1" PROJECT LOCATION ___ **Interstate 64 to State Road 68** STATION __ Centerline Gibson and Warrick Counties, Indiana OFFSET

DRILLING and SAMPLING INFORMATION TEST DATA 1/11/07 Hammer Wt. 140 lbs. Date Started 1/12/07 Date Completed Hammer Drop **30** in. T. Smoot Drill Foreman Spoon Sampler OD 2.0 in. Standard Penetration Test, Blows per 6 in. Increments S. Marcum Rock Core Dia. Inspector Pocket Penetrometer PP-tsf Sampler Graphics Recovery Graphics Boring Method **HSA-ATV** Shelby Tube OD -- in. Moisture Content, Sample Type Groundwater SOIL CLASSIFICATION Stratum Elevation, Remarks Stratum Depth, ft Sample No. Depth Scale, f SURFACE ELEVATION 456.5 456.1 Topsoil (Visual) Ground surface elevation Brown, very moist, very soft SILTY CLAY LOAM provided by SS 1-0-1 29.0 0.5 1 Bernarndin-Lochmueller & (Lab No. 2) A-6 Associates 1-2-1 29.6 0.5 2 SS Boring was backfilled in 6.0 450.5 accordance with the INDOT Brown and gray, moist, stiff SILTY CLAY LOAM SS 4-6-6 18.7 3.5 3 Aquifer Protection Guidelines (Lab No. 2) A-6 448.5 8.0 Brown and gray, moist, medium stiff SILTY 4 SS 5-5-5 3.0 **CLAY** (Lab No. 1) A-7-6 10 443.0 13.5 SS 50/0.3' Brown to gray, severely weathered SHALE 5 15 INDOT Proj. No. IM-069-0 INDÓT Des. No. 0500436 437.8 18.7 SS 50/0.2' 6 Bottom of Test Boring at 18.7 ft

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

5.5 ft. Noted on Drilling Tools

At Completion Dry ft. ∇ **0.4** ft.

24 hours ▼ After _____ 11.5 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

- Mud Drilling - Hand Auger HA

American Structurepoint, Inc. BORING# RB-47 CLIENT _____ Proposed Interstate 69 Design/Build Project PROJECT NAME _____ JOB# 86.00481.0181 STATION _____ 23+00 Ramp "B-1" PROJECT LOCATION Interstate 64 to State Road 68

TROOLC	JI LUCATIOI	Gibson and				dian						STATION	'	Centerline
						uiaii	<u>a </u>					OFFSET		
		DRILLING and SAI	MPLING INFO	ORMATI	ION		ſī					T	EST DA	ATA I
Date	Started	1/16/07	Hammer W	/t		140	lbs.							
Date	Completed	1/17/07	Hammer D	rop _		30	in.							
Drill F	Foreman _	T. Smoot	Spoon San	npler OD		2.0	in.				est,			
Inspe	ector	B. Kleeman	Rock Core	Dia			in.				on T reme	%	Į je	
Borin	ng Method	HSA-ATV	Shelby Tub	e OD			in.		Sics		etrati . Inci	ent, 6	ome	
				#	Π			ype	Grap	iter	Pene 6 in	Sont	netr	
	SO	IL CLASSIFICATION		Ejon,	E #,	, L	ale	Je T	ver V	dwa	lard	nre (et Pe	urks
	SURFA	ACE ELEVATION 460	.7	Stratum Elevation, 1	Stratum Depth, ft	Depth Scale, 1	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
	<u>Fopsoil (Visua</u> Brown, moist, Lab No. 1) A-	hard to stiff SILTY CLA	īΥ ^ſ	460.3	0.4		1	SS	X	Ţ	3-14-17		1.75	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
						_	2	SS	\bigvee		9-17-13		4.0	
				452.7	8.0	5	3	SS	X		7-7-8		3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
- E	Brown and gra Lab No. 4) A-	ny, moist, stiff SILTY CL 7-6	AY			10-	4	SS	X	麵	7-7-8		3.5	
	Brown, severe	ly weathered SHALE		447.2	13.5	- - - - - 15—	5	SS	×		50/0.2'			INDOT Proj. No. IM-069-0 (004)
	Gray, weather	ed SHALE t Boring at 20.0 ft		442.2	18.5 20.0	20	6	SS	_	1	50/0.1'			INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

8.4 ft.

Dry ft. ▼ After 24 hours **1.4** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-48** CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION _____**27+00 Ramp "B-1"** PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and				dian	а					OFFSET		12 ft Right
	DRILLING and SAI	MPLING INFO	ORMATI	ON							Т	EST DA	_
Date Started	1/17/07 1/18/07 T. Smoot B. Kleeman HSA-ATV	Hammer W Hammer D Spoon Sam Rock Core Shelby Tub	rop _ npler OD Dia		30 2.0 	in. in. in.		ohics ophics		Standard Penetration Test, Blows per 6 in. Increments	%	Penetrometer	
	DIL CLASSIFICATION FACE ELEVATION 46	2	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Per Blows per 6 i	Moisture Content,	Pocket Penet PP-tsf	Remarks
CLAY LOAM (Lab No. 2) A	ay, slightly moist, very s	tiff SILTY 	461.7 460.5	0.3 1.5		1	SS	X		6-16-22		4.0	Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc.
Gray, severely	y weathered SHALE				-	2	SS			32-42-50			American Structurepoint, inc.
			454.0	8.0	5—	3	SS	X	Ţ	23-35-48			Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown and gr	ay, weathered SHALE				10	4	SS	X		23-34-50			
					15—	5)	SS	×	國	50/0.3'			INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
Bottom of Tes	st Boring at 20.0 ft		442.0	20.0	20	6	SS	×		50/0.3'			

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After 24 hours

Dry ft. **5.9** ft. **12.1** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# RB-49 CLIENT____ Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# PROJECT NAME 7+00 Ramp "B" PROJECT LOCATION Interstate 64 to State Road 68 STATION

DRILLING and SAMPLING INFORMATION Date Started 1/20/07 Hammer Wt. 140 lbs. Date Completed 1/21/07 Hammer Drop 30 in. Inspector B. Kleeman Boring Method HSA-ATV Shelby Tube OD SOIL CLASSIFICATION SURFACE ELEVATION 430.2 SURFACE ELEVATION 430.2 SURFACE ELEVATION 430.2 SITTOPSOII (Visual) Brown, gray and dark brown, moist, medium stiff SILTY CLAY LOAM (Lab No. 2) A-6 Brown, very moist, stiff SILT 418.2 12.0 418.2 12.0 418.2 12.0 15 SS VI SS VI SS VI SS VI SS	· · · · · · · · · · · · · · · · · · ·	state 64 to State									STATION		7 TUU Kanip D
Date Started 1/20/07	Gibs	son and Warrick	Count	ies, In	<u>idian</u>	<u>a</u>					OFFSET_		Centerline
Date Completed 1/21/07 Hammer Drop 30 in. Inspector Spoon Sampler OD 2.0 in. Inspector B. Kleeman Rock Core Dia Inspector B. Kleeman Rock Core Dia Inspector Rock Core Dia Inspector Rock Core Dia Inspector Ins	DRILLIN	G and SAMPLING INF	ORMATI	ON							Т	EST D	ATA
Topsoil (Visual) 429.7 0.5 429.7 0.5	Date Completed Drill Foreman Inspector Drill Foreman	Hammer D Spoon Sar Rock Core	orop _ npler OD Dia		30 2.0 	in. in. in.		lics hics		tration Test, Increments	int, %	meter	
Age Proposit Visual) Age A			Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graph Recovery Graph	Groundwater	Standard Pene Blows per 6 in.	Moisture Conte	Pocket Penetra PP-tsf	Remarks
SS 3-4-5 2.0 Boring was backfilled in accordance with the INDIAquifer Protection Guidel 3 4 5 5-5-5 24.0 2.25 Boring was backfilled in accordance with the INDIAquifer Protection Guidel 4 5 5 5 5 5 5 5 5 5	Brown, gray and dark brow SILTY CLAY LOAM	n, moist, medium stiff					SS	X	Ţ	2-3-4	27.6	1.5	Bernarndin-Lochmueller 8
3 SS 3 3-4-5 2.0 accordance with the IND/Aquifer Protection Guidel 418.2 12.0 418.2 12.0 5-5-5 24.0 2.25 Brown, very moist, stiff SILT (Lab No. 6) A-4 5 5-5-6 INDOT Proj. No. IM-069-(004) INDOT Des. No. 050043 Gray, very moist, soft to very soft CLAY (Lab No. 5) A-7-6 5 SS 3 -2-3 29.5 2.0 405.2 25.0 25.0 25.0 25.0 25.0 25.0 25.0	**				5-	2	SS	X		3-3-4	24.9	1.75	Paring was bookfilled in
418.2 12.0 12.0 10					-	3	SS			3-4-5		2.0	accordance with the INDO Aquifer Protection Guidel
418.2 12.0					10-	4	SS			5-5-5	24.0	2.25	
Gray, very moist, soft to very soft CLAY (Lab No. 5) A-7-6 413.2			418.2	12.0	- - - -	5	SS	X	璃	5-5-6			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gray, very moist, soft to very (Lab No. 5) A-7-6	y soft CLAY	413.2	17.0	_	9	SS	V		3-2-3	29.5	20	INDOT Proj. No. IM-069- (004) INDOT Des. No. 050043
405.2 25.0 25.7 \(\Delta\)					20-			\wedge	ӯ	3			
	Bottom of Test Boring at 25	5.0 ft	405.2	25.0	25—	7	SS	X		1-1-2	36.2	0.75	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

▼ After 24 hours

None ft. **22.0** ft.

2.4 ft.

11.1 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-50 CLIENT_____ PROJECT NAME ____ Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION _____10+00 Ramp "B" PROJECT LOCATION Interstate 64 to State Road 68

PROJECT LOCATIO	Gibson and				dian	 а					OFFSET		Centerline
	DRILLING and SAM				i di di i						_	EST DA	
D 1 01 1 1					4.40	[
Date Started	1/22/07 1/23/07	Hammer W				· II							
Date Completed Drill Foreman	T. Smoot	Hammer Di Spoon Sam				· II				s it			
Inspector	S. Marcum	Rock Core								Tes			
Boring Method	HSA-ATV	Shelby Tub	_			· II		s s		ation	, " "	neter	
Borning Metalod		Chicley Tub					Φ	aphic	J.	enetra in. Ir	nten	etron	
so	OIL CLASSIFICATION		on, ff	c≠	¥	_	э Тур	er Gr	dwate	ırd Pe	e C	Pen	ķs
SURF	ACE ELEVATION 429.	5	Stratum Elevation,	Stratum Depth, ft	Depth Scale, 1	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
Brown and da stiff SILTY CL (Lab No. 2) A	irk brown, moist, medium AY LOAM	n stiff to	429.2	0.3	- - - -	1	SS	X		3-4-5	22.3		Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					5—	2	SS	X		4-5-6			
					- - -	3	SS	X	Ţ	4-5-6	18.2		Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS			5-5-8			
+ + Brown, wet, n + + (Lab No. 6) A + + + + + + + + + + + + + + + + + + +	nedium stiff SILT 4		417.5	12.0	- - - - - 15—	5	SS	X	翻	4-3-5			
Gray, very mo (Lab No. 5) A	oist, soft CLAY -7-6	- ·	412.5	17.0	20—	6	SS	X		3-3-2	29.3		INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
+ + Gray, wet, vet + + (Lab No. 6) A	 y soft SILT 4		407.5	22.0	- - - - - -	7	SS	V		2-1-2			
Bottom of Tes	st Boring at 25.0 ft		404.5	25.0	25			\triangle					

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

∑ At Completion

▼ After 24 hours

Dry ft.

5.5 ft. **14.2** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-51 CLIENT____ 86.00481.0181 Proposed Interstate 69 Design/Build Project PROJECT NAME JOB# 14+00 Ramp "B" PROJECT LOCATION Interstate 64 to State Road 68 STATION

ROJECT LOCATIO	N <u>interstate 6</u>	4 to State	Roau	00						_ >	TATION		14+00 Kamp B
	Gibson and	Warrick (Count	ies, In	diana	1				_ c	FFSET_		Centerline
	DRILLING and SA	MPLING INF	ORMAT	ION		_					Т	EST DA	ATA
Date Started	1/22/07	Hammer W	/t.		140	lbs.							
Date Completed	1/23/07	Hammer D											
Drill Foreman	T. Smoot	Spoon San	npler OD		2.0	in.			est.	ıts			
Inspector	B. Kleeman	Rock Core	Dia			in.			l E	eme	, ,	e	
Boring Method	HSA-ATV	Shelby Tub	e OD	-		in.		nics hics	tratic	Incr	ent, %	omet	
			_ #				ype	Sampler Graphics Recovery Graphics	Pene	Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	
SC	DIL CLASSIFICATION		Ition,	h, ff	ر. ان بـــ	e l	ple T	Sampler Grap Recovery Gra	dard	s per	ture (et Pe	arks
SURF	ACE ELEVATION 413	3.0	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, f	Sample No.	Sample Type	Sam	Stan	Blow	Mois	Pock PP-ts	Remarks
Topsoil (Visua Brown and da soft to mediur (Lab No. 2) A	irk brown, very moist to n stiff SILTY CLAY LO	moist, very AM	412.3	0.7		1	SS			2-1	28.5	0.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					‡	2	SS		1 3-	3-3	20.6	0.75	
-brown and gi	ray below 6.0 ft				5	3	SS	X	2-4	4-6		2.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10	4	SS	X	4-4	4-4	22.7	2.5	
Brown, moist, (Lab No. 1) A	stiff SILTY CLAY -7-6		401.0	12.0	15	5	SS	X	4-1	6-6		3.0	INDOT Proj. No. IM-069-0 (004)
Brown and grand Bottom of Tes	ay, severely weathered at Boring at 18.9 ft	SHALE ſ	394.5 394.1	18.5 18.9		6	SS	× -	50/	0.4'			ÍNDÓT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

0.6 ft.

4.2 ft.

Noted on Drilling Tools None ft. Dry ft.

 ∑ At Completion
 ▼ After 24 hours

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-52 CLIENT____ 86.00481.0181 Proposed Interstate 69 Design/Build Project PROJECT NAME JOB# 20+00 Ramp "B" PROJECT LOCATION Interstate 64 to State Road 68 STATION

ROJECT LOCATIO	N <u>interstate 6</u>	4 to State	Ruau	00							STATION		ZUTUU Kanip B
	Gibson and	Warrick	Count	ies, In	dian	a					OFFSET_		Centerline
	DRILLING and SA	MPLING INF	ORMAT	ION		-					Т	EST DA	ATA
Date Started _	1/23/07	Hammer W	/t		140	lbs.							
Date Completed	1/24/07	Hammer D	rop _		30	in.							
Drill Foreman	T. Smoot	Spoon San	npler OD	·	2.0	in.				est, nts			
Inspector	B. Kleeman	Rock Core	Dia			in.				on To eme	%	e	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		hics phics		etrati	ent, 9	omet	
sc	DIL CLASSIFICATION		#,				Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	0
			Stratum Elevation, ft	Stratum Depth, ft	oth le, ft	Sample No.	nple	npler	nudv	ndar ws pe	sture	ket F	Remarks
SURF	ACE ELEVATION 417	7.0			Depth Scale, f	San No.	San	San	G	Sta	Moi	Poc PP.	_
Topsoil (Visual + + + + Light gray and + + + + (Lab No. 7) A	brown, very moist, sof	t SILT	416.2	0.8	- - - -	1	SS		Ţ	1-2-2	21.7	1.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
Brown, moist, (Lab No. 1) A	medium stiff SILTY CL -7-6	AY				2	SS			1-3-4	24.6	0.25	
					5	3	SS		轁	3-4-4		2.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS	X		5-5-5		2.75	
Brown and lig SILTY CLAY (Lab No. 2) A	ht brown, slightly moist LOAM	 , very stiff	404.0	13.0	- - - - - 15—	5	SS	X		7-7-7		3.5	
	 nd gray, moist, stiff SIL'		399.0	18.0	- - - -								INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
(Lab No. 4) A	et Boring at 20.0 ft	TY CLAY	397.0	20.0	20-	6	SS	X		5-6-7		4.0	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After 24 hours

Dry ft. **1.1** ft. **6.1** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

Page

1

CLIENT American Structurepoint, Inc.

PROJECT NAME Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68

Gibson and Warrick Counties, Indiana

BORING#

RB-53

86.00481.0181

STATION

3+00 Ramp "C"

Centerline

		Gibson and	Warrick	Count	ies, In	dian	а					OFFSET_		Centerline
		DRILLING and SAI	MPLING INF	ORMATI	ION		_					Т	EST DA	ATA
Da	ate Started	1/18/07	Hammer W	/t.		140	lbs.							
Da	ate Completed	1/19/07	Hammer D	rop		30	- 11							
Dr	ill Foreman _	T. Smoot	Spoon San	npler OD		2.0	in.				est, nts			
Ins	spector	B. Kleeman	Rock Core	Dia			in.				on Te emer	%	e	
Во	oring Method	HSA-ATV	Shelby Tub	e OD			in.		nics hics		tratic Incr	ent, %	omet	
	SO.	IL CLASSIFICATION		, #	l			Туре	Sampler Graphics Recovery Graphics	vater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	0
			: 1	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	mpler	Groundwater	andard ows pe	oisture	cket F	Remarks
		ACE ELEVATION 425	0.1	Str		Sc	S S	Sa	RSS	Ö	## ## ## ## ## ## ## ## ## ## ## ## ##	Ĭ	88	_
	Topsoil (Visua Brown, moist, LOAM (Lab No. 2) A-	medium stiff to stiff SIL	TYCLAY	424.4	0.7	- - - -	1	SS	X	Ĩ	4-5-5	26.8	1.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
						- - -	2	SS			2-4-6		3.0	
						5—	3	SS	X		5-5-6	19.3	3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
						10-	4	SS	X	繭	6-6-7		2.25	
	Brown and gra CLAY (Lab No. 1) A-	ay, moist, medium stiff \$	 SILTY	413.1	12.0	- - - -		00			0.0.4	00.4	0.75	
	(Lab Ho. 1) 11	. •				15-	5	SS	X		3-3-4	29.4	2.75	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
- + + - + - + - + - + - + - + - + - + -	Brown, wet, so (Lab No. 6) A-			407.1	18.0	20	6	SS	X		3-2-2		1.5	11.00 1.000 1.00
	5545/1101 165	(25.11) di 25.0 it												

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

● Noted on Drilling Tools None ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

- Hariu Augei

American Structurepoint, Inc. BORING# **RB-54** CLIENT_____ Proposed Interstate 69 Design/Build Project PROJECT NAME _____ JOB# 86.00481.0181 7+00 Ramp "C" PROJECT LOCATION Interstate 64 to State Road 68 STATION ___

		Gibson and	Warrick	Count	ies, In	dian	a					FFSET_		Centerline
		DRILLING and SA	MPLING INF	ORMATI	ION		_					Т	EST DA	ATA
Da	ate Started	1/18/07	Hammer V	/t.		140	lbs.							
	ate Completed	1/19/07	Hammer D			30								
	ill Foreman	T. Smoot	Spoon San)						st, ts			
Ins	spector	B. Kleeman	Rock Core								n Te imer		_	
	oring Method	HSA-ATV	Shelby Tub	e OD			in.		ics hics		tratio	nt, %	mete	
		NII OLAGOIFIGATION		#	1			ype	Sampler Graphics Recovery Graphics	ater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	
┡	SC	DIL CLASSIFICATION		um ation,	Stratum Depth, ft	e, ft	pld	Sample Type	overy	Groundwater	ıdard vs pe	sture	ket P	Remarks
	SURF	ACE ELEVATION 415	5.4	Stratum Elevation, ft		Depth Scale, 1	Sample No.	Sam	San	Gro	Star	Mois	Poc PP-4	Ren
- + + - + + - + + - + +	Topsoil (Visua Light brown ai SILT (Lab No. 7) A	nd light gray, very mois	t, very soft	414.7	0.7	- - - -	1	SS	X	Ţ	2-2-1	23.6	0.75	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
- ++ - ++ - ++	-						2	SS			1-2-1	25.3	0.5	
	Brown and gra CLAY (Lab No. 1) A	ay, moist, medium stiff	 SILTY	409.9	5.5	5	3	SS	X	薆	3-3-4	20.3	3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
						10-	4	SS	X	Ē	4-4-3	27.5	3.5	
- + + - + +	 Gray, wet, me (Lab No. 6) A	edium stiff SILT		402.4	13.0	- - - -	5	SS	V		3-3-3		1.75	
- + +		et Boring at 15.0 ft		400.4	15.0	15—							•	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools 8.5 ft.

 ∑ At Completion
 6.0 ft. ▼ After 24 hours **0.8** ft.

6.2 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# RB-55 CLIENT_____ Proposed Interstate 69 Design/Build Project PROJECT NAME _____ JOB# 86.00481.0181 STATION _____ 13+00 Ramp "C" PROJECT LOCATION Interstate 64 to State Road 68

PROJECT LOCATION	Gibson and				dian						OFFSET	'	Centerline
					ulan	<u>a</u>					-		
	DRILLING and SAM	IPLING INFO	ORMATI	ON		Ī		- 1			T	EST DA	ATA I
Date Started	1/20/07	Hammer W				· II							
Date Completed	1/21/07	Hammer D				· II							
Drill Foreman _	T. Smoot	Spoon Sam	pler OD		2.0	in.				Fest, ents			
Inspector	B. Kleeman	Rock Core	_			in.		W		ion T	%	ţe.	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		phics		etrat ı. Inc	ent,	g J	
	U OLAGOIFICATION		#				ype	Grap	ater	Pen r 6 ir	Moisture Content,	eneti	
SO	IL CLASSIFICATION		ation,	um h, ft	., ⊕ ⊐	ble	ple 1	pler Very	ndw	dard 's pe	ture	sf P	arks
SURFA	ACE ELEVATION 419.	7	Stratum Elevation,	Stratum Depth, ft	Depth Scale,	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Mois	Pocket Penetrometer PP-tsf	Remarks
Topsoil (Visua Brown and da SILTY CLAY L (Lab No. 2) A-	rk brown, moist, medium -OAM	/ n stiff	419.2	0.5	- - - -	1	SS	X	Ŧ	2-3-5		2.25	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					5—	2	SS			4-5-5	18.2	3.0	
			411.7	8.0	-	3	SS	X		4-4-6		3.25	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown and gra (Lab No. 1) A-	ay, moist, stiff SILTY CL/ 7-6	AY			10-	4	SS	X		5-6-6	20.1	3.0	
Brown, gray all SILTY CLAY L		 edium stiff	407.7	12.0		5	SS	X		4-6-4	20.1	2.0	
Brown and gra	ay, moist, stiff SILTY CL/ 7-6	 AY	402.7	17.0	15— - - - - -				쩳				INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
Bottom of Tes	t Boring at 20.0 ft		399.7	20.0	20-	6	SS	X		4-6-8		2.5	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After 24 hours

Dry ft. **0.3** ft. **17.0** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. **RB-56** BORING # CLIENT Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# PROJECT NAME 17+00 Ramp "C" PROJECT LOCATION ___ **Interstate 64 to State Road 68** STATION __ Centerline Gibson and Warrick Counties, Indiana OFFSET

DRILLING and SAMPLING INFORMATION TEST DATA 1/20/07 Hammer Wt. 140 lbs. Date Started 1/21/07 Date Completed Hammer Drop **30** in. T. Smoot Drill Foreman Spoon Sampler OD **2.0** in. Standard Penetration Test, Blows per 6 in. Increments B. Kleeman Rock Core Dia. Inspector Pocket Penetrometer PP-tsf Sampler Graphics Recovery Graphics Boring Method **HSA-ATV** Shelby Tube OD -- in. Moisture Content, Sample Type Groundwater SOIL CLASSIFICATION Stratum Elevation, Remarks Stratum Depth, ft Sample No. Depth Scale, 1 SURFACE ELEVATION 428.1 427.6 Topsoil (Visual) Ground surface elevation Brown and gray, moist, medium stiff SILTY provided by SS 2-4-5 1.0 1 Bernarndin-Lochmueller & CLAY LOAM Associates (Lab No. 2) A-6 3-3-5 35.6 2 SS 1.75 Boring was backfilled in accordance with the INDOT SS 4-3-4 2.5 3 Aquifer Protection Guidelines 4 SS 5-4-4 21.4 2.0 10 SS 3-3-3 29.1 5 2.0 15 INDOT Proj. No. IM-069-0 ⊻ 4111 17.0 INDÓT Des. No. 0500436 Brown and gray, very moist, soft SILTY CLAY (Lab No. 1) A-7-6 SS 2-2-2 36.9 2.5 6 20 406.1 22.0 Gray, very moist, very soft CLAY (Lab No. 5) A-7-6 SS 0-0-1 53.9 0.25 7 25 401.1 27.0 Gray and dark brown, moist, very stiff SILTY CLAY LOAM (Lab No. 2) A-6 8-10-10 3.0 8 SS Bottom of Test Boring at 30.0 ft

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

19.8 ft. Noted on Drilling Tools

0.1 ft.

2.0 ft.

16.0 ft. At Completion ∇

▼ After ____**24**_ hours

Boring Method

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

CA - Casing Advancer

- Mud Drilling - Hand Auger HA

American Structurepoint, Inc. BORING# RB-57 CLIENT____ Proposed Interstate 69 Design/Build Project 86.00481.0181 PROJECT NAME JOB# 3+50 Ramp "A" PROJECT LOCATION Interstate 64 to State Road 68 STATION

ROJECT LOCATIO	N <u>interstate 64</u>	+ io State	Nuau	00						STATION	'	STOU KAIIIP A
	Gibson and	Warrick	Count	ies, In	dian	a				OFFSET		Centerline
	DRILLING and SAM	MPLING INF	ORMATI	ON		_				Т	EST D	ATA
Date Started	1/18/07	Hammer W	/t.		140	lbs.						
Date Completed	1/19/07	Hammer D										
Drill Foreman	T. Smoot	Spoon San	npler OD		2.0	in.			est,			
Inspector	B. Kleeman	Rock Core	Dia			in.			on Te		e l	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		sirs Shics	tratic	ent, %	omet	
			#				ype	Srapt Grag	Pene 6 in.	Sonte	enetro	
SC	OIL CLASSIFICATION		tion,	E, t	, L	ole	ole T	oler (dard s per	ture	et Pe	arks
SURF	ACE ELEVATION 417	.8	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, f	Sample No.	Sample Type	Sampler Graphics Recovery Graphics Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
Topsoil (Visual ++ Brown and lig ++ (Lab No. 7) A	ht gray, very moist, very	soft SILT	417.3	0.5 3.0		1	SS	¥	1-0-1	27.5		Ground surface elevation provided by Bernarndin-Lochmueller & Associates
Light gray, mo CLAY LOAM (Lab No. 2) A	oist, medium stiff to stiff	SILTY			-	2	SS		3-3-3			
(Lab No. 2) A			409.8	8.0	5—	3	SS		5-5-6		2.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown, slightl CLAY (Lab No. 1) A	y moist, stiff to very stiff -7-6	SILTY			10-	4	SS	X	5-5-7	22.5		
					15—	5	SS	X	5-7-9		4.0	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
Gray, weather Bottom of Tes	ed SHALE t Boring at 19.6 ft		399.3 398.2	18.5 19.6	1 1 1	6	SS	X	23-50/0.6	3'		INDEX DES. NO. 0300430

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

 ∑ At Completion
 ▼ After 24 hours

None ft. Dry ft.

0.9 ft. **4.0** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-58 CLIENT____ 86.00481.0181 Proposed Interstate 69 Design/Build Project PROJECT NAME JOB# 20+00 Ramp "D" PROJECT LOCATION Interstate 64 to State Road 68 STATION

PROJECT LOCATIO	N <u>Interstate 64</u>	to State	Roau	00							STATION	·	20+00 Kamp D
	Gibson and \	Narrick (Count	ies, In	diana	a					OFFSET_		Centerline
	DRILLING and SAMI	PLING INFO	ORMATI	ON		_					Т	EST DA	ATA
Date Started	1/18/07	Hammer W	/t.		140	lbs.							
Date Completed		Hammer D											
Drill Foreman	T. Smoot	Spoon Sam				ll ll				est,			
Inspector	B. Kleeman	Rock Core	Dia			in.				on Te emer	 %	 	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		ics		tratic	nt, %	mete	
			=	I			/be	Sraph Grap	ţe	^{>} ene 6 in.	Conte	netro	
SC	DIL CLASSIFICATION		m ion,	E #,	_ #_	<u>e</u>	ie T	ler G	dwa	lard F	l e l	et Pe	آ ا
SURF	ACE ELEVATION 412.9	ı	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, f	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
Topsoil (Visua Light gray and Lab No. 7) A	brown, very moist, very	soft SILT	412.4	0.5		1	SS		Ţ	2-1-2	25.5	0.25	Ground surface elevation provided by Bernamdin-Lochmueller & Associates
- ++ - ++ - ++						2	SS			1-1-2	26.7	0.25	
Brown and gr CLAY (Lab No. 1) A	ay, moist, medium stiff SI	LTY	407.4	5.5	5	3	SS			2-3-3	24.7	1.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS	X		3-3-4	22.5	2.5	
- + + Gray, wet, so - + + (Lab No. 6) A		. 	399.9	13.0	15—	5	SS		3	2-2-2		1.0	
+ + + + + + - + + - + +			204.4	10.5	13 -								INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
(Lab No. 5) A	oist, very soft CLAY -7-6 st Boring at 20.0 ft		394.4	18.5 20.0	20-	6	SS	X		2-1-2	52.9	0.5	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

 ∑ At Completion
 ▼ After 24 hours

None ft.

Dry ft. **0.9** ft. **12.9** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# RB-59 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION ______1595+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and Warrick Counties, Indiana												60 ft Right
	DRILLING and SAM	PLING INFO	ORMATI	ON		_					Т	EST DA	ATA
Date Started	1/18/07	Hammer W	t.		140	lbs.							
Date Completed	1/19/07	Hammer Dr	rop			ll ll							
Drill Foreman _	T. Smoot	Spoon Sam	pler OD		2.0	in.				est, nts			
Inspector	S. Marcum	Rock Core	Dia			in.				on Te	%	- o	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		hics		tratic	nt, %	omet	
so	IL CLASSIFICATION		J, ff	ر #	#	0	Type	Sampler Graphics Recovery Graphics	lwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	\$
SURFA	ACE ELEVATION 410.0)	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, f	Sample No.	Sample Type	Sample	Groundwater	Standa Blows p	Moistur	Pocket PP-tsf	Remarks
Topsoil (Visua + + Brownish gray + + (Lab No. 7) A-	, moist, very soft SILT		409.6	0.4 3.0		1	SS		Ţ	2-1-1	26.0		Ground surface elevation provided by Bernarndin-Lochmueller & Associates
Brown and gra CLAY LOAM (Lab No. 2) A-	ay, moist, medium stiff SI	LTY	404.5	5.5	5	2	SS	X	癩	4-3-4	23.0		
Brown and gra CLAY (Lab No. 1) A-	ay, moist, medium stiff SI	LTY	404.5	5.5	,	3	SS			4-4-4	20.9		Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
					10-	4	SS	X		4-5-5	20.0		
Brown and gra	ny, severely weathered Sl	- — — — . HALE	394.0	16.0	15	5	SS	X		6-8-11			INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
	t Boring at 20.0 ft		390.0	20.0	20—	6	SS			50/0.1'			INDOT Des. No. 0500456

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 ▼ After 24 hours

Dry ft. **0.3** ft. **4.0** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# **RB-60** CLIENT_____ PROJECT NAME ____ Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION ______1599+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

Gibson and Warrick Counties, Indiana											60 ft Left
DRILLING and SAMPLING INF	ORMAT	ION		_					Т	EST DA	ATA
Date Started 1/18/07 Hammer V	Vt.		140	lbs.							
Date Completed 1/19/07 Hammer D	rop _			ll ll							
Drill Foreman T. Smoot Spoon Sar	npler OD		2.0	in.				est, nts			
Inspector B. Kleeman Rock Core	Dia.			in.				on Te	%	<u></u>	
Boring Method HSA-ATV Shelby Tul	oe OD			in.		nics Phics		tratic	nt, %	met	
	#				ype	Sampler Graphics Recovery Graphics	ater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	
SOIL CLASSIFICATION	um ation,	tum th, ft	e, ⊞	ble	Sample Type	pler	Groundwater	dard /s pe	ture	ket P	Remarks
SURFACE ELEVATION 409.0	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, f	Sample No.	Sam	Sam	Grou	Stan Blow	Mois	Pock PP-t	Rem
+ + Topsoil (Visual) + + Light gray and brown, very moist, very soft SILT	408.5	0.5					+				Ground surface elevation provided by
Light gray and brown, very moist, very soft SiE1				1	SS	X		2-1-1	26.7	0.5	Bernarndin-Lochmueller & Associates
]++ 	405.5	3.5	E				園				Associates
Brown and gray, moist, stiff SILTY CLAY LOAM (Lab No. 2) A-6			╽╶╡	2	SS	\mathbb{X}		3-5-6	28.6	1.5	
Brown, moist, medium stiff to stiff SILTY CLAY	403.5	5.5	5-								Boring was backfilled in
(Lab No. 1) A-7-6				3	SS	\mathbb{X}		4-3-4	24.2	1.5	accordance with the INDOT Aquifer Protection Guidelines
			7								
			\exists	4	SS	X		5-5-7		2.5	
			10								
	396.0	13.0									
Gray, moist, hard SILTY CLAY (Lab No. 4) A-7-6				5	SS	\bigvee	•	17-19-35			
			15			A					INDOT Proj. No. IM-069-0
											(004)
			=								ÌNDÓT Des. No. 0500436
Gray, severely weathered SHALE	390.5	18.5 18.7		6	SS	×		50/0.2'			
Bottom of Test Boring at 18.7 ft					00			30/0.2			

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools **13.5** ft.

 ∑ At Completion
 Dry ft. ▼ After 24 hours **0.1** ft.

3.1 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

CLIENT American Structurepoint, Inc.

PROJECT NAME Proposed Interstate 69 Design/Build Project

PROJECT LOCATION Interstate 64 to State Road 68

Gibson and Warrick Counties, Indiana

BORING # RB-61

JOB # 86.00481.0181

STATION 1603+00 Line "A"

OFFSET 60 ft Right

	Gibson and Warrick Counties, Indiana												60 ft Right
	DRILLING and SA	MPLING INF	ORMATI	ION		-	TEST DATA					ATA	
Date Started	1/18/07	Hammer W	/t.		140	lbs.							
Date Completed	1/19/07	Hammer D	rop		30								
Drill Foreman	T. Smoot	Spoon San	npler OD	·	2.0	in.				est, nts			
Inspector	B. Kleeman	Rock Core	Dia			in.				on Te emer	%	ū	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		hics		tratic		omet	
SC	DIL CLASSIFICATION		Stratum Elevation, ft	um h, ft	6,#	ple	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
SURF	ACE ELEVATION 414	.1	Stratu	Stratum Depth, ft	Depth Scale, f	Sample No.	Sam	Sam	Grou	Stan Blow	Mois	Pock PP-ts	Rem
Topsoil (Visua Brown, moist, LOAM (Lab No. 2) A	, medium stiff to stiff SIL	TY CLAY	413.6	0.5		1	SS	X		3-3-4	24.2	1.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					5—	2	SS	X		4-6-6		2.0	
			406.1	8.0	- - -	3	SS	X		2-4-6	19.4	2.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown and gr CLAY (Lab No. 1) A	ay, moist, stiff to very st	iff SILTY			10-	4	SS	X	Ť	4-5-6	21.1	2.75	
					15—	5	SS	X	翰	11-9-12		4.0	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
	ents noted in Sample No	o. 6	394.1	20.0	20	6	SS	X		7-9-13		4.5	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

● Noted on Drilling Tools None ft.

Dry ft. **9.6** ft. **13.8** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

Page **1** of **1**

American Structurepoint, Inc. BORING# TB-1 CLIENT _____ Proposed Interstate 69 Design/Build Project PROJECT NAME _____ JOB# 86.00481.0181 36+30 "S-2-A-PR" PROJECT LOCATION Interstate 64 to State Road 68 STATION

										OFFSET		16 ft Left	
	DRILLING and SAI						TEST DATA						
D 1 01 1 1					4 4 4	[
Date Started	1/9/07	Hammer W				- 11							
Date Completed	1/10/07	Hammer Di				· II				~ ئ			
Drill Foreman _	T. Smoot	Spoon Sam				- 11				Tesi			
Inspector	S. Marcum HSA-ATV	Rock Core				- 11		s S		ation cren	, %	eter	
Boring Method		Shelby Tub	e OD				a)	phic	_	netra in. In		trom	
sc	OIL CLASSIFICATION		n, ff	٠,			Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	ω
			Stratum Elevation,	Stratum Depth, ft	Depth Scale, ft	Sample No.	nple	nple	hund	ndar ws p	isture	ket	Remarks
	ACE ELEVATION 459	9.4			Sca	Sar	Sar	Sar	Gro	Sta	Mo	P. P. G.	_
Topsoil (Visual Brown and gray SILTY CLAY (Lab No. 2) A	ay, moist, medium stiff t LOAM	to stiff	459.1	0.3	-	1	SS	X	Ţ	2-4-5	25.4		Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					5—	2	SS			3-4-5	27.1		
					- - -	3	SS			4-5-6		2.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
-brown and da	ark brown below 8.0 ft				10-	4	SS	X	200	4-5-5	21.9	2.5	
Brown and da	rk brown, severely weat	thered	447.4	12.0	 15 	5	SS	X		36-50/0.5'			INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
					20-	6	SS	×		50/0.4'			
- Gray, hard Sh	 HALE		436.4	23.0	_	RC-1	RC						Auger refusal at 23.0 ft
			431.4	28.0	25—								Bedrock cored from 23.0 ft to 28.0 ft Recovery = 100% RQD = 96%
Bottom of Tes	st Boring at 28.0 ft		431.4	20.0	_								

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 Dry ft.

1.1 ft.

8.1 ft.

▼ After 24 hours

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

HA - Hand Auger

CLIENT	American Structurepoint, Inc.	BORING #	TB-1-S
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION _	Interstate 64 to State Road 68	STATION	36+30 "S-2-A-PR"
_	Gibson and Warrick Counties, Indiana	OFFSET	16 ft Right

PROJECT LOCATION	Interstate 64 to State	Road	68					STATION	l	36+30 "S-2-A-PR"
	Gibson and Warrick	Count	ies, In	diana	OFFSET 16 ft Right					
DR	RILLING and SAMPLING INF	ORMATI	ON		TEST DATA					
Inspector S. N		rop _ npler OD Dia		140 lbs 30 in. 2.0 in in.		aphics	Groundwater Standard Penetration Test,	Moisture Content, %	Pocket Penetrometer PP-tsf	
SOIL CLA	SSIFICATION	n, ft	ر #	# 6	Type	200	lwater rd Per	e Cor	Pene	s)
SURFACE E	LEVATION 460	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft Sample	Sample Type	Recovery Graphics	Groundwater Groundwater Standard Per	Moistur	Pocket PP-tsf	Remarks
Sounding	see Boring No. TB-1 for on)	が iii	23.0	10 15 10 10 10 10 10 10						Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc. Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

Dry ft. ▼ After 24 hours

1.8 ft. **9.6** ft. **Boring Method**

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

CLIENT American Structurepoint, Inc.

PROJECT NAME Proposed Interstate 69 Design/Build Project

PROJECT LOCATION Interstate 64 to State Road 68

Gibson and Warrick Counties, Indiana

BORING # TB-2

30B # 86.00481.0181

STATION 37+62 "S-2-A-PR"

16 ft Right

DRILLING and SAMPLING INFORMATION TEST DATA 1/9/07 Hammer Wt. 140 lbs. Date Started 1/10/07 Date Completed Hammer Drop **30** in. T. Smoot Drill Foreman Spoon Sampler OD **2.0** in. Standard Penetration Test, Blows per 6 in. Increments S. Marcum Rock Core Dia. 2.0 in. Inspector Pocket Penetrometer PP-tsf Sampler Graphics Recovery Graphics Boring Method **HSA-ATV** Shelby Tube OD -- in. Moisture Content, Sample Type Groundwater SOIL CLASSIFICATION Stratum Elevation, Remarks Stratum Depth, ft Sample No. Depth Scale, SURFACE ELEVATION 456.2 455.9 Topsoil (Visual) Ground surface elevation Brown and gray, moist, stiff to medium stiff provided by SS 2-6-6 1 Bernarndin-Lochmueller & SILTY CLAY LOAM Associates (Lab No. 2) A-6 26.0 0.75 2 SS 4-4-4 Boring was backfilled in accordance with the INDOT 0.5 SS 2-2-4 23.3 3 Aquifer Protection Guidelines 447.7 8.5 Brown, gray and dark brown, moist, stiff SILTY 4 SS 4-5-6 22.0 **CLAY** 10 (Lab No. 1) A-7-6 444.2 12.0 Brown to gray, severely weathered SHALE with sandstone seams SS 50/0.4' 5 15 INDOT Proj. No. IM-069-0 INDÓT Des. No. 0500436 SS 50/0.4' 6 20 SS 50/0.2' 7 25 Auger refusal at 28.5 ft Bedrock cored from 28.5 ft to 33.5 ft 427.7 28.5 Recovery = 100% Dark gray, hard SHALE -RC-1 RC RQD = 76%

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

■ Cave Depth

________ft. _________ft. ___________ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Continuous Flight
CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

Page **1** of

2

CLIENT	American Structurepoint, Inc.	BORING #	TB-2
PROJECT NAME	Proposed Interstate 69 Design/Build Project	 JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	37+62 "S-2-A-PR"
	Gibson and Warrick Counties, Indiana	OFFSET_	16 ft Right

Gibson and				diana	a					FFSET		16 ft Right
DRILLING and SA									_	_	EST DA	_
Date Started 1/9/07 Date Completed 1/10/07 Drill Foreman T. Smoot Inspector S. Marcum Boring Method HSA-ATV	Hammer W Hammer D Spoon San Rock Core Shelby Tub	/t rop _ npler OD Dia		30 2.0 2.0	in. in. in.		nics phics	atration Test	Blows per 6 in. Increments	%		
SOIL CLASSIFICATION		m ijon, ft	H, ff	, ft		Sample Type	Sampler Graphics Recovery Graphics	Groundwater Grandard Pen	per 6 ir	Moisture Content,	Pocket Penetrometer PP-tsf	arks
(continued)		Stratum Elevation, 1	Stratum Depth, ft	Depth Scale, f	Sample No.	Samp	Reco		Blows	Moist	Pocke PP-ts	Remarks
Bottom of Test Boring at 33.5 ft		422.7	33.5									

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

▼ After 24 hours

Dry ft. **0.7** ft. **9.8** ft. **Boring Method**

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

CLIENT	American Structurepoint, Inc.	BORING #	TB-2-S
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	37+62 "S-2-A-PR"
	Gibson and Warrick Counties, Indiana	OFFSET	16 ft Right

PROJECT LOCATION Interstate 64 to State Road 68											<u> </u>	3/+02 3-2-A-PR
Gibson and \	Warrick (Counti	es, In	dian	a					OFFSET_		16 ft Right
DRILLING and SAMI	PLING INFO	ORMATI	ON		-					Т	EST DA	ATA
Date Started1/9/07	Hammer W	/t		140	lbs.							
Date Completed 1/10/07	Hammer Di				ll ll							
Drill Foreman T. Smoot	Spoon Sam	npler OD		2.0	in.				est, nts			
Inspector S. Marcum	Rock Core	Dia			in.				on Te emel		l in	
Boring Method HSA-ATV	Shelby Tub	e OD			in.		Sici		tratic	int, %	met	
		#				ype	Grap	iter	Pene 6 in.	Confe	netro	
SOIL CLASSIFICATION		m tion,	u, f	ر ; # ;	ale	ole Ty		ndwa	lard I	nue (et Pe	arks
SURFACE ELEVATION 456		Stratum Elevation, f	Stratum Depth, ft	Depth Scale, ft	Samp No.	Sample Type	Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
Sounding Blank drill to 22.0 ft (see Boring No. TB soil/bedrock description)	3-2 for	<u>⊗</u> ⊞		5 10 15	<u> </u>		28	<u>Ma</u> <u>Ma</u>	<i>о</i> в	2		Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc. Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines INDOT Proj. No. IM-069-0 (004)
Bottom of Sounding at 22.0 ft		434.0	22.0	20 —								(004) INDOT Des. No. 0500436 Auger refusal at 22.0 ft
Commis Time				th to C			Ш					Daving Mathead

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. Dry ft.

 ∑ At Completion
 ▼ After 24 hours

1.2 ft. **9.2** ft. **Boring Method**

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling
HAD Auger

HA - Hand Auger

American Structurepoint, Inc. BORING# TB-3 CLIENT _____ Proposed Interstate 69 Design/Build Project 86.00481.0181 PROJECT NAME JOB# 38+96 "S-2-A-PR" Interstate 64 to State Road 68 PROJECT LOCATION STATION

PROJECT LOCATION Interstate 64 to State Road 68											38+96 "S-2-A-PR"
Gibson	Gibson and Warrick Counties, Indiana										16 ft Left
DRILLING ar	d SAMPLING INF	ORMAT	ION						Т	EST DA	ATA
Date Started 1/10/07	Hammer V	Vt.		140 ₺	s.						
Date Completed 1/11/07	 Hammer D			30 ir	ll l						
Drill Foreman T. Smoot	Spoon Sar	npler OD			ll l			est,			
Inspector S. Marcum	Rock Core	Dia		2.0 ir	ı.			on Te		 	
Boring Method HSA-ATV	Shelby Tub	e OD		ir	ı.	ics hics		tratic	nt, %	mete	
		#	T		J &	ìraph Grap	ţe.	^{>} ene 6 in.	Conte	netro	
SOIL CLASSIFICAT	ION	E ion,	E #,	_ <u></u> = <u>a</u>	je J	oler G	dwa	lard I	nre (et Pe	ırks
SURFACE ELEVATION	453.0	Stratum Elevation,	Stratum Depth, ft	Scale, f	No. Sample Type	Sampler Graphics Recovery Graphic		Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
Topsoil (Visual) Gray and brown, moist, mediun CLAY LOAM (Lab No. 2) A-6	n stiff SILTY	452.7	0.3		1 SS	X	Ţ	4-4-6	29.0	1.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
					2 SS			3-4-5	21.2		
		445.0	8.0	5	3 SS			3-3-4	28.6	0.75	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown and gray, moist, stiff SIL (Lab No. 1) A-7-6	TY CLAY	1440.0	0.0	10	4 SS	X	園	4-5-7	22.5	3.0	
Brown and gray, moist, medium CLAY LOAM (Lab No. 2) A-6	a stiff SILTY	441.0	12.0		5 SS	V		3-3-4	23.1	1.0	
				15							INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
Dark gray to gray, severely wea	thered SHALE	434.0	19.0	20	6 SS	X		16-35-50/0.5'			
				25—	7 SS	×		50/0.5'			
		423.0	30.0		8 SS	×		50/0.3'			

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 Dry ft.

▼ After 24 hours

0.4 ft. **9.9** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

HA - Hand Auger

CLIENT_	American Structurepoint, Inc.	BORING #	TB-3
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	38+96 "S-2-A-PR"
	Gibson and Warrick Counties, Indiana	OFFSET	16 ft Left

PROJECT LOCATIO	N <u>interstate t</u>	4 to State	Road	68							STATION	ــــــ	30790 3-2-A-PK
	Gibson and	d Warrick	Count	ies, Ir	ndian	<u>a</u>					OFFSET		16 ft Left
	DRILLING and SA	MPLING INF	ORMATI	ON							Т	EST DA	ATA
Date Started	1/10/07	Hammer V	√t.		140	lbs.							
Date Completed	1/11/07	Hammer D											
Drill Foreman	T. Smoot	Spoon San								est, nts			
Inspector	S. Marcum	Rock Core	Dia		2.0	in.				on Te emer		 	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		si Pics		tratic	int, %	mete	
			T #2	I	Π		/pe	Graph	ter	^{>} ene 6 in.	Sonte	netro	
SC	OIL CLASSIFICATION		E ioi	E #	_ #_	e e	le T	e e	dwa	ard F	l e	t Pe	\$ \frac{\frac{7}{3}}{3}
	(continued)		Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
Dark gray, we	athered SHALE		ОШ	0, 0		0, 2				- O, E	+-		
1					=								
					-								
			419.0	34.0	=	9	SS RC	X		50/0.4'			
Dark gray, ha	rd SHALE				35—	RC-1	RC						Auger refusal at 34.0 ft
													Bedrock cored from 34.0 ft to
					-								39.2 ft
			413.8	39.2	-								Recovery = 100% RQD = 100%
Bottom of Tes	st Boring at 39.2 ft		. 413.0	39.2	-								
			1		1			\perp					

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. Dry ft.

0.4 ft.

9.9 ft.

▼ After 24 hours

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

Page 2 of 2

CLIENT	American Structurepoint, Inc.	BORING #	TB-3-S
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB#	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	38+96 "S-2-A-PR"
	Gibson and Warrick Counties, Indiana	OFFSET_	16 ft Right

JECT LOCATION	Interstate 6	4 to State	Road	68						STATION	l	38+96 "S-2-A-PR"	
	Gibson and	Warrick (Counti	es, In	diana					OFFSET_		16 ft Right	
	DRILLING and SAI	MPLING INFO	ORMATI	ON						TEST DATA			
Date Started	1/10/07	Hammer W	′t		140 lbs.								
Date Completed	1/11/07	Hammer Di	rop		30 in.								
Orill Foreman	T. Smoot	Spoon Sam	pler OD		2.0 in.				est, nts				
nspector	S. Marcum	Rock Core	Dia		in.				on To	%	je j		
Boring Method	HSA-ATV	Shelby Tub			in.	9 G	raphics	<u>.</u>	enetrati in. Incr	ntent, 9	etromet		
SOIL	. CLASSIFICATION		ım tion, ft	um ı, ft	e, ft ole	ole Typ	very G	ndwate	dard Pe s per 6	ure Co	et Pene	arks	
SURFA	CE ELEVATION 453	3	Stratu Eleva	Stratu	Scale Samp	Samp			Stand	Moist	Pock PP-ts	Remarks	
Sounding Blank drill to 40. soil/bedrock des	2 ft (see Boring No. T cription)	B-3 for			1			¥				Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc.	
					5							Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines	
					10-			類				INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436	
	Date Started Date Completed Drill Foreman nspector Soring Method SURFA Sounding Blank drill to 40.	Gibson and DRILLING and SAI Date Started 1/10/07 Date Completed 1/11/07 T. Smoot Dill Foreman S. Marcum Dill Foring Method HSA-ATV SOIL CLASSIFICATION SURFACE ELEVATION 453 Sounding	Gibson and Warrick (DRILLING and SAMPLING INFO Date Started 1/10/07 Hammer World Foreman T. Smoot Spoon Same Properties Soring Method HSA-ATV Shelby Tub SURFACE ELEVATION 453 Sounding Blank drill to 40.2 ft (see Boring No. TB-3 for	Gibson and Warrick Counting DRILLING and SAMPLING INFORMATION Date Started 1/10/07 Hammer Wt. Date Completed 1/11/07 Hammer Drop Drill Foreman T. Smoot Spoon Sampler OD Drill Foreman Rock Core Dia. Drill Foreman Soring Method HSA-ATV Shelby Tube OD SOIL CLASSIFICATION SURFACE ELEVATION 453 Sounding Blank drill to 40.2 ft (see Boring No. TB-3 for	Gibson and Warrick Counties, In DRILLING and SAMPLING INFORMATION Date Started 1/10/07 Hammer Wt. Date Completed 1/11/07 Hammer Drop Drill Foreman T. Smoot Spoon Sampler OD Drill Foreman Rock Core Dia. Boring Method HSA-ATV Shelby Tube OD SOIL CLASSIFICATION SURFACE ELEVATION 453 Sounding Blank drill to 40.2 ft (see Boring No. TB-3 for	Active Started 1/10/07 Hammer Wt. 140 lbs. Date Completed 1/11/07 Hammer Drop 30 in. Drill Foreman T. Smoot Spoon Sampler OD 2.0 in. Drill Foreman HSA-ATV Shelby Tube OD in. SOIL CLASSIFICATION Surphy Active Soundling Blank drill to 40.2 ft (see Boring No. TB-3 for soil/bedrock description) Sounding 10-10-10-11-11-11-11-11-11-11-11-11-11-1	And the started and sample of the started an	DRILLING and SAMPLING INFORMATION Date Started 1/10/07 Hammer Wt. 140 lbs. Date Completed 1/11/07 Hammer Drop 30 in. Drill Foreman T. Smoot Spoon Sampler OD 2.0 in. Drill Foreman Rock Core Dia in. Soring Method HSA-ATV Shelby Tube OD in. SOIL CLASSIFICATION United Sounding Blank drill to 40.2 ft (see Boring No. TB-3 for soil/bedrock description) SURFACE ELEVATION 153 For soil/bedrock description	DRILLING and SAMPLING INFORMATION Date Started 1/10/07 Hammer Wt. 140 lbs. Date Completed 1/11/07 Hammer Drop 30 in. T. Smoot Spoon Sampler OD 2.0 in. Drill Foreman T. Smoot Shelby Tube OD in. SOIL CLASSIFICATION United Starting Soil Soil Soil Soil Soil Soil Soil Soil	Gibson and Warrick Counties, Indiana DRILLING and SAMPLING INFORMATION Date Started 1/10/07 Hammer Wt. 140 lbs. Date Completed 1/11/07 Hammer Drop 30 in. Drill Foreman T. Smoot Spoon Sampler OD 2.0 in. Drill Foreman Rock Core Dia in. Drill Foreman HSA-ATV Shelby Tube OD in. SOIL CLASSIFICATION United Driving Method HSA-ATV Shelby Tube OD in. SURFACE ELEVATION 453 United Driving Method Surprise May 18 (SO) A Driving Method Meth	Gibson and Warrick Counties, Indiana DRILLING and SAMPLING INFORMATION Table Started 1/10/07 Hammer Wt. 140 Date Completed 1/11/07 Hammer Drop 30 Indiana Solucion S. Marcum Rock Core Dia. SOIL CLASSIFICATION SURFACE ELEVATION 453 Sounding Blank drill to 40.2 ft (see Boring No. TB-3 for soli/bedrock description) Gibson and Warrick Counties, Indiana Table Dromatics Table Dromatic	Company Comp	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

Dry ft. ▼ After 24 hours

0.4 ft. **23.8** ft. **Boring Method**

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

CLIENT	American Structurepoint, Inc.	BORING #	TB-3-S
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	38+96 "S-2-A-PR"
_	Gibson and Warrick Counties, Indiana	OFFSET	16 ft Right

ROJECT LOCATIO	N <u>Interstate 6</u>	o4 to State	Road	68							STATION	·	38+96 "S-2-A-PR"
	Gibson and	d Warrick	Counti	ies, In	diana	<u>a</u>					OFFSET		16 ft Right
	DRILLING and SA	MPLING INF	ORMATI	ON							Т	EST D	ATA
Inspector	1/10/07 1/11/07 T. Smoot S. Marcum HSA-ATV	Hammer V Hammer D Spoon Sar Rock Core Shelby Tuk	orop _ npler OD Dia		30 2.0 	in. in. in.	:	ohics aphics		Standard Penetration Test, Blows per 6 in. Increments	tent, %	rometer	
SC	DIL CLASSIFICATION		Stratum Elevation, ft	Stratum Depth, ft	e, ft	ple	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	idard Per /s per 6 i	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
	(continued)		Strati	Strat	Depth Scale, ft	Sample No.	Sam	Sam	Grou	Stan Blow	Mois	Pock PP-t	Rem
Sounding Blank drill to a soil/bedrock of	40.2 ft (see Boring No. description)	TB-3 for	412.8	40.2	35								
Bottom of So	undig at 40.2 ft												Auger refusal at 40.2 ft

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

∑ At Completion

▼ After 24 hours

Dry ft.

0.4 ft.

23.8 ft.

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

CLIENT	American Structurepoint, Inc.	BORING #	TB-3-T
PROJECT NAME	Proposed Interstate 69 Design/Build Project	 JOB#	86.00481.0181
PROJECT LOCATION _	Interstate 64 to State Road 68	STATION	38+90 "S-2-A-PR"
_	Gibson and Warrick Counties, Indiana	OFFSET	16 Left

DRILLING and SAMPLING INFORMATION TEST DATA 1/24/07 Date Started Hammer Wt. -- lbs. 1/24/07 Date Completed Hammer Drop ___ in. T. Smoot Drill Foreman Spoon Sampler OD ____ in. Standard Penetration Test, Blows per 6 in. Increments B. Kleeman Rock Core Dia. Inspector -- in. Pocket Penetrometer PP-tsf Sampler Graphics Recovery Graphics Boring Method **HSA-ATV** Shelby Tube OD **3.0** in. Moisture Content, Sample Type Groundwater SOIL CLASSIFICATION Stratum Elevation, Remarks Stratum Depth, ft Sample No. Depth Scale, f SURFACE ELEVATION 453 Ground surface elevation Blank drill to obtain Shelby tube samples estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc. ST Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines 10 INDOT Proj. No. IM-069-0 INDÓT Des. No. 0500436 ST 2 14.0 439.0 Bottom of Test Boring at 14.0 ft

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Noted on Drilling Tools

At Completion ∇

Depth to Groundwater

-- ft. -- ft.

▼ After ____ hours -- ft. -- ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

- Mud Drilling HA

- Hand Auger

American Structurepoint, Inc. BORING# TB-4 CLIENT ____ Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# PROJECT NAME 244+32 Line "D" Interstate 64 to State Road 68 PROJECT LOCATION STATION

PROJECT LOCATION Interstate 64 to State Road 68										244+32 Line "D"
Gibson and Warrick	Count	ies, In	diana				_ c	FFSET_		10 ft Left
DRILLING and SAMPLING INF	ORMAT	ON		TEST DATA						
Date Started Hammer V	Vt		140 lbs.							
Date Completed 1/3/07 Hammer D	Orop _		30 in.							
Drill Foreman C. Carroll Spoon Sar	mpler OD		2.0 in.			1	est, nts			
Inspector S. Marcum Rock Core	Dia.		2.0 in.			F	eme eme	%	e	
Boring Method HSA-Truck Shelby Tul	be OD		in.		hics ohics	1	etrati . Incr	ent, 6	omet	
OOU OU ADDIFIGATION	#			ype	Sampler Graphics Recovery Graphic	ater	Standard Penetration 1 est, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	
SOIL CLASSIFICATION	rm ation,	n, ff	e, ft ple	Sample Type	pler	Groundwater	dard 's pe	ture	cet Poss	Remarks
SURFACE ELEVATION 419.3	Stratum Elevation,	Stratum Depth, ft	Depth Scale, ft Sample No.	Sam	Sam	Grou	Blow	Mois	Pock PP-t	Rem
0.7 ft Asphalt, 0.5 ft Crushed Limestone (Visual)	418.1	1.2								Ground surface elevation provided by
Gray and brown, moist, medium stiff, silty clay loam (FILL)				SS	X	4	-3-4		2.0	Bernarndin-Lochmueller &
(Lab No. 2) A-6										Associates
			_ 2	SS	\bigvee	2	-3-4	26.1		
			5 -	-	Ш					Boring was backfilled in
			- 3	ss	X	3	-4-4		1.0	accordance with the INDOT Aquifer Protection Guidelines
	410.8	8.5	+		H					
Brown, moist, medium stiff SILTY CLAY LOAM	1 410.0	0.5	- 4	SS		2	-4-5	22.1		Tooling to the first the first to the first
(Lab No. 2) A-6			10							Traffic control with flagmen required
			- 5	SS		2	-3-4	35.7	1.5	
			15	33	ΔП	3	-3-4	35.7	1.5	
										INDOT Proj. No. IM-069-0 (004)
Gray, very moist, medium stiff to soft CLAY	402.3	17.0								INDOT Des. No. 0500436
(Lab No. 5) A-7-6					Ш					
			6	SS	X	3	-3-3	25.0	0.25	
			20			⊠				
			- 7	SS		2	-3-2	33.2		
			25		H					
-1//										
3			- 8	SS		2	-2-3	47.9	0.25	
	389.3	30.0] "		X		-2-0	ا ق. <i>ا</i> ا	0.20	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 21.0 ft.

▼ After ____ hours

--_ ft. **21.1** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# TB-4 CLIENT _____ 86.00481.0181 Proposed Interstate 69 Design/Build Project JOB# PROJECT NAME 244+32 Line "D" PROJECT LOCATION Interstate 64 to State Road 68 STATION

OJECT LOCATIC											IATION		244+32 Line D
	Gibson and	Warrick (Counti	ies, In	dian	a				0	FFSET_		10 ft Left
	DRILLING and SA	MPLING INFO	ORMATI	ON		-					Т	EST DA	ATA
Date Started _	1/3/07	Hammer W	/t		140	lbs.							
Date Completed	1/3/07	Hammer D	rop _		30	in.							
Drill Foreman	C. Carroll	Spoon San	npler OD		2.0	in.				est, nts			
Inspector	S. Marcum	Rock Core	Dia		2.0	in.				on Te eme	%	ia e	
Boring Method	HSA-Truck	Shelby Tub	e OD			in.		hics		etratic Incr	ent, 9	omet	
			=				ype	Grag	ater	Pene 6 in	Sont	netr	
SC	DIL CLASSIFICATION		Ejon,	E #,	ر <u>ب</u>	ole	ole T	yery	ndwa	dard s per	nre (et Pe	arks
	(continued)		Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
(Lab No. 5) A			380.8 380.1	38.5 39.2	35 —	9 10 RC-1	SS SS RC	X		2-3-4 19-50/0.2'	46.0		Auger refusal at 39.2 ft Bedrock cored from 39.2 ft 44.2 ft Recovery = 100% RQD = 35%
Bottom of Tes	st Boring at 44.2 ft												

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

∑ At Completion

▼ After ____ hours

21.0 ft. --_ ft.

21.1 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

Page 2 of 2

CLIENT	American Structurepoint, Inc.	BORING#	TB-4-S
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION _	Interstate 64 to State Road 68	STATION	244+32 Line "D"
_	Gibson and Warrick Counties, Indiana	OFFSET	8 ft Right

PROJECT LOCATION Interstate 64 to State		STATION	·	244+32 Line "D"						
Gibson and Warrick	Count	ies, In	diana				OFFSET_		8 ft Right	
DRILLING and SAMPLING INF	ORMAT	ION					TEST DATA			
Date Started1/16/07 Hammer V	Vt		140 lbs							
Date Completed 1/16/07 Hammer D	rop _		30 in.							
Drill Foreman T. Smoot Spoon Sar	npler OD		2.0 in.			est, nts				
Inspector B. Kleeman Rock Core	Dia		in.			on Te	9	ia i		
Boring Method HSA-Truck Shelby Tub	oe OD		in.	Sir	3	tratic	ent, %	omet		
	#			ye ye	ater 1	Pene 6 in.	Sonte	snetro		
SOIL CLASSIFICATION	tion,	۾ '	Se ±	ole T	ndw	dard s per	inre (et Pe	arks	
SURFACE ELEVATION 419.3	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft Sample	Sample Type Sampler Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks	
Sounding									Ground surface elevation estimated based upon Plan	
Blank drill to 41.5 ft (see Boring No. TB-4 for soil/bedrock description)			1						and Profile Sheets and Cross-Sections provided by	
									American Structurepoint, Inc.	
1										
]			5—						Boring was backfilled in accordance with the INDOT	
1									Aquifer Protection Guidelines	
]]							
									Traffic control with flagmen	
1			10						required	
]]							
╡			=							
1										
∃			15						INDOT Proj. No. IM-069-0	
1									(004)	
1									INDOT Des. No. 0500436	
]]							
1			20							
1										
<u> </u>]							
1			‡							
<u> E</u>			25							
1										
1			‡							
]										
1										
<u></u>	•	•			_	•	-	•		

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

▼ After ____ hours

None ft. **36.0** ft.

____ ft. **39.5** ft. **Boring Method**

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

Page 1

2

CLIENT	American Structurepoint, Inc.	BORING #	TB-4-S
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	244+32 Line "D"
	Gibson and Warrick Counties, Indiana	OFFSET_	8 ft Right

PROJECT LOCATION Interstate 64 to State		STATION		244+32 Line "D"						
Gibson and Warrick	Count	ies, In	diana	a				OFFSET		8 ft Right
DRILLING and SAMPLING INI	ORMAT	ION		-				Т	EST DA	ATA
Date Started1/16/07 Hammer	ν t		140	lbs.						
Date Completed 1/16/07 Hammer I				ll ll						
Drill Foreman T. Smoot Spoon Sa	mpler OD		2.0	in.			est, nts			
Inspector B. Kleeman Rock Core	e Dia			in.			on To	<u> </u>	ē	
Boring Method HSA-Truck Shelby Tu	be OD			in.	nics		etrati	ent, 6	omet	
201 01 100 200	#				Sample Type Sampler Graphics Recovery Graphics	ater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	
SOIL CLASSIFICATION	ation,	h, ft	e, ⊞	ple	Sample Type Sampler Grap Recovery Gra	Groundwater	dard /s pe	ture	cet Po	Remarks
(continued)	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sam No.	Sam Sam Recc	Grou	Stan Blow	Mois	Pock PP-t	Rem
Sounding										
Blank drill to 41.5 ft (see Boring No. TB-4 for soil/bedrock description)										
Soll/bedrock description)										
1			ا م							
]			35—			 ⊈				
1										
킈			7							
]						園				
1			40							
Bottom of Sounding at 41.5 ft	377.8	41.5								Auger refusal at 41.5 ft
Bottom of Sounding at 41.5 ft										Auger relusar at 41.5 ft
<u> </u>			\Box			$\overline{}$	L			1

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

▼ After ____ hours

☑ Cave Depth

36.0 ft. ____ ft.

39.5 ft.

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

Page 2 of

2

American Structurepoint, Inc. BORING# TB-5 CLIENT _____ Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 PROJECT NAME _____ 245+50 Line "D" PROJECT LOCATION Interstate 64 to State Road 68 STATION

Gibson and	0	FFSET_		8 ft Left							
DRILLING and SAM				Т	EST DA	ATA					
Date Started	Hammer W	′t		140 lbs							
Date Completed 1/3/07	Hammer Dr	ор		30 in.							
Drill Foreman C. Carroll	Spoon Sam	pler OD		2.0 in.				est, nts			
Inspector S. Marcum	Rock Core	Dia		2.0 in.				on Te	, ,	 15	
Boring Method HSA-Truck	Shelby Tub	e OD		in.		nics		tratic	ent, %	omet	
COIL CLASSIFICATION		#,			J Se	Sampler Graphics Recovery Graphics	ater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	
SOIL CLASSIFICATION		Stratum Elevation,	Stratum Depth, ft	Depth Scale, ft Sample	Sample Type	npler	Groundwater	ndard ws pe	sture	ket P	Remarks
SURFACE ELEVATION 417.	6	Strai	Stra	Depth Scale, Sample	San	San	Gro	Star	Moi	Poc	Ren
0.8 ft Asphalt, 0.5 ft Crushed Limeston (Visual) Brown, slightly moist, medium dense to sandy loam with trace cinders (FILL)	~	416.3	1.3	- 1 - 1	ss	X		9-11-9			Ground surface elevation provided by Bernarndin-Lochmueller & Associates
o (Visual)				= 2	ss			4-5-4	11.9		
				5 - 3	ss	X		4-3-3			Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
				10 - 4	ss	X	ӯ	3-3-4	17.7		Traffic control required
Brown and gray, moist, medium stiff S CLAY LOAM (Lab No. 2) A-6	GILTY	404.1	13.5	15	ss	X		3-2-4	23.6	2.0	INDOT Proj. No. IM-069-0 (004)
Brown and gray, moist, soft CLAY (Lab No. 5) A-7-6		400.6	17.0	- 6 20	ss	X	•	2-2-3	23.6	1.0	INDOT Des. No. 0500436
Brown to gray, severely weathered SH	IALE	393.6	24.0	25	ss	X	200	6-10-27			
				- 8	ss	X		35-50/0.2'			

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools 18.0 ft.

∑ At Completion

▼ After ____ hours

10.0 ft. ___ ft. **25.1** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# TB-5 CLIENT _____ 86.00481.0181 Proposed Interstate 69 Design/Build Project PROJECT NAME JOB# 245+50 Line "D" PROJECT LOCATION Interstate 64 to State Road 68 STATION

PROJECT LOCATIO	N <u>interstate t</u>	o4 to State	Roau	00							STATION		245+50 Line D
	Gibson and	d Warrick	Count	ies, In	dian	<u>a</u>					OFFSET		8 ft Left
DRILLING and SAMPLING INFORMATION											Т	EST DA	ATA
Date Started	1/3/07	Hammer W	/t.		140	lbs.							
Date Completed	1/3/07	Hammer D											
Drill Foreman	C. Carroll	Spoon San	npler OD		2.0	in.				est, nts			
Inspector	S. Marcum	Rock Core	Dia		2.0	in.				on To eme	%	ja ja	
Boring Method	HSA-Truck	Shelby Tub	e OD			in.		hics		etrati . Incr	ent, 9	omet	
				l			ype	Grap	ater	Pene 6 in	Moisture Content, %	enetr	
SC	OIL CLASSIFICATION		fion,	E, #	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ole	Sample Type	oler (Groundwater	dard s per	ture	et Pe	arks
	(continued)		Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sam	Sampler Graphics Recovery Graphics	Grou	Standard Penetration Test, Blows per 6 in. Increments	Mois	Pocket Penetrometer PP-tsf	Remarks
Brown to gray	, severely weathered S	HALE	0, =		_			П					
1					_								
					_								
Crov wootho	 red to slightly weathere		383.6	34.0	_	9	SS RC			50/0.5'			Auger refusal at 34.0 ft
Gray, weather	ed to slightly weathere	USHALL			35—	RC-1	RC						Bedrock cored from 34.0 ft to
					_								39.0 ft Recovery = 63%
					_			П					RQD = 40%
			378.6	39.0	_			ЦІ					
Bottom of Tes	st Boring at 39.0 ft												

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools 18.0 ft. ∑ At Completion
 10.0 ft.

▼ After ____ hours

___ ft. **25.1** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

Page 2 of

2

CLIENT	American Structurepoint, Inc.	BORING #	TB-5-S
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION _	Interstate 64 to State Road 68	STATION	245+65 Line "D"
_	Gibson and Warrick Counties, Indiana	OFFSET	8 ft Right

											OFFSET_		8 ft Right	
DRILLING and SAMPLING INFORMATION											T	EST DA	ATA	
Da Di In:	ate Started ate Completed ill Foreman spector bring Method	1/15/07 1/15/07 T. Smoot B. Kleeman HSA-Truck	Hammer W Hammer D Spoon Sam Rock Core Shelby Tub	rop _ npler OD Dia		2.0	in. in. in.		ohics aphics		Standard Penetration Test, Blows per 6 in. Increments	tent, %	rometer	
		IL CLASSIFICATION	' 6	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	ample o.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	tandard Per ows per 6 ii	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
	Sounding Blank drill to 2 soil/bedrock de	7.0 ft (see Boring No. 7		#S 390.6	<u> 変</u>	30 5 10 15 15 20 1 25 1 25 1 25 1 25 1 25	Ö	Ö		(S)		Ψ	<u> </u>	Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc. Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines Traffic control with flagmen required INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

8.5 ft. ___ ft.

9.1 ft.

▼ After ____ hours

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# TB-6 CLIENT _____ Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 PROJECT NAME 246+64 Line "D" PROJECT LOCATION Interstate 64 to State Road 68 STATION

PROJECT LOCATIO	Gibson and Warrick	OFFSET		10 ft Right						
	DRILLING and SAMPLING INF							_	EST DA	_
Date Started Date Completed Drill Foreman	1/4/07 Hammer V 1/4/07 Hammer D C. Carroll Spoon Sar	Vt)rop		140 lbs. 30 in. 2.0 in.			st, ıts			
Inspector	S. Marcum Rock Core HSA-Truck Shelby Tul	Dia		2.0 in.	e aphics	ir ir	Standard Penetration Test, Blows per 6 in. Increments	ntent, %	strometer	
	DIL CLASSIFICATION ACE ELEVATION 415.7	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft Sample No.	Sample Type Sampler Graphics	Groundwater	Standard Pe Blows per 6	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
∐∭ (Visual)	0.3 ft Crushed Limestone medium stiff, silty clay (FILL) 7-6	414.3	1.4	- - 1	ss		3-3-3	24.5	2.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
		410.2	5.5	5 2	ss		4-4-5			Davier was healfilled in
Brown and gr (Lab No. 2) A	ay, moist, soft SILTY CLAY LOAM -6			3	ss		2-2-3	24.2	0.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
				10	ss	魔	3-3-5		2.0	Traffic control required
Brown, moist, (Lab No. 1) A	medium stiff SILTY CLAY -7-6	403.7	12.0	- - - - 5	ss		3-4-5	25.6	3.0	INDOT Proj. No. IM-069-0
-++ Brown, very r -++ (Lab No. 6) A	noist, medium stiff SILT -4	398.7	17.0	- - - - - 6	ss 🛚		3-3-4		1.75	(004) INDOT Des. No. 0500436
	y weathered SHALE red LIMESTONE red SHALE	392.2 390.2 389.5	23.5 25.5 26.2	- 7	SS X	•	27-50/0.4'			Bedrock cored from 25.5 ft to 30.5 ft Recovery = 96% RQD = 47%

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools 23.0 ft.

 ∑ At Completion
 Dry ft.

▼ After ____ hours

--_ ft. **10.0** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

Page

2

CLIENT_	American Structurepoint, Inc.	BORING#	TB-6
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	246+64 Line "D"
_	Gibson and Warrick Counties, Indiana	OFFSET	10 ft Right

PROJECT LOCATION Interstate 64 to State Road 68												246+64 Line "D"
Gibson and Warrick Counties, Indiana										OFFSET		10 ft Right
DRILLING and SAMPLING INFORMATION											EST DA	ATA
Date Started 1/4/07	Hammer W	⁄t		140_	bs.							
Date Completed 1/4/07	Hammer D			30 ii	ll ll							
Drill Foreman C. Carroll	Spoon Sam	pler OD		2.0 i	n.				est, nts			
Inspector S. Marcum	Rock Core	Dia		2.0 i	n.				on Te emel		ē	
Boring Method HSA-Truck	Shelby Tub	e OD		i	n.		si Pis Si		tratic	nt, %	met	
		<u>ب</u>			4	, be	iraph Grap	ter	ene 6 in.	Conte	netro	
SOIL CLASSIFICATION		m ion, f	ı, ft	_ # <u>-</u>	ا <u>ب</u> و	le Ty	ler G	dwa	lard F	ure C	et Pe	r k s
(continued)		Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Samp No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
Gray, weathered SHALE	Γ	385.2	30.5	+	\dashv							
Bottom of Test Boring at 30.5 ft												
							Ш					

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

23.0 ft. Noted on Drilling Tools Dry ft.

▼ After ____ hours

___ ft. **10.0** ft. **Boring Method**

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

Page 2 of 2

CLIENT	American Structurepoint, Inc.	BORING #	TB-6-S
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	246+64 Line "D"
	Gibson and Warrick Counties, Indiana	OFFSET	10 ft Left

	LOCATION	Interstate 6	+ to otate	Nuau	00							STATION		240+04 Line D
		dian	<u>a </u>					OFFSET_		10 ft Left				
		DRILLING and SA	MPLING INFO	ORMATI	ON		-					Т	EST DA	ATA
Date S	Started	1/5/07	Hammer W	/t		140	lbs.							
Date C	 Completed	1/5/07	Hammer D											
Drill Fo	oreman _	T. Smoot	Spoon Sam				- 11				est,			
Inspec	ctor	B. Kleeman	Rock Core	Dia			in.				on Te		in in	
Boring	g Method _	HSA-Truck	Shelby Tub	e OD			in.	S	hics		tratic	int, %	met	
				#				/pe	Grap	ıter	Pene 6 in.	Conte	inetro	
	SOI	IL CLASSIFICATION		Ejon,	E, t	ر <u>ب</u>	ole	ole Ty	very	ndwa	dard I s per	nre (et Pe	arks
	SURFA	ACE ELEVATION 415	5.7	Stratum Elevation, f	Stratum Depth, ft	Depth Scale, ft	Samp No.	Sample Type	Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
	ounding lank drill to 23 bil/bedrock de	3.2 ft (see Boring No. ⁻	TB-6 for	0, 11		10				≅				Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc. Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines Traffic control with flagmen required INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
Bo	ottom of Soui	nding at 23.2 ft		392.5	23.2	20								Auger refusal at 23.2 ft

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. ∑ At Completion
 10.0 ft.

▼ After ____ hours

☑ Cave Depth

___ ft. **12.5** ft. **Boring Method**

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling
HA - Hand Auger

American Structurepoint, Inc. BORING# TB-7 CLIENT_____ PROJECT NAME ___ Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# 247+97 Line "D" PROJECT LOCATION Interstate 64 to State Road 68 STATION

		Gibson and	Warrick (OFFSET_		10 ft Left						
		DRILLING and SA	MPLING INFO	ORMATI	ON						Т	EST DA	ATA
D	ate Started ate Completed rill Foreman _	1/4/07 1/4/07 C. Carroll	Hammer W Hammer Dr Spoon Sam	rop npler OD						Fest, ents			
	spector	S. Marcum	Rock Core			2.0 in.		, s		tion T	%	eter	
В —	oring Method	HSA-Truck	Shelby Tub	e OD		in.	a a	aphics raphic	ڀ	enetra in. In	ntent,	etrome	
	SO	IL CLASSIFICATION		m ion, ft	E, t	t, ft	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	u k s
	SURFA	ACE ELEVATION 414	.7	Stratum Elevation,	Stratum Depth, ft	Depth Scale, ft Sample	Samp	Samp	Groun	Stanc	Moist	Pocke PP-ts	Remarks
	(Visual)	0.5 ft Crushed Limeston medium stiff, silty clay 7-6	Г	413.5	1.2	- - 1 - 1	SS	X		3-3-3		2.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
	*					2	ss			3-4-3	28.0		
	Gray, very moi	st, very soft SILTY CL	AY LOAM	409.2	5.5 8.0	5 - 3	ss	X		1-1-1	25.5		Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
	Brown and light stiff SILTY CLAR (Lab No. 1) A-		m stiff to			10 -	SS	X	Ā	3-4-5	24.3		Traffic control required
				396.7	18.0	15	SS	X	双	4-5-6	21.1	4.0	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
	Brown and gra SANDSTONE	y, severely weathered				20 = 6	SS	X		6-9-15			
	Gray, weathers -thin limestone from 24.0 to 2	seams noted in shale	————· bedrock	390.7	24.0	25 RC-	SS RC	\boxtimes		100/0.4'			Bedrock cored from 24.0 ft to 29.0 ft Recovery = 92% RQD = 62%
ŧ	Bottom of Test	Boring at 29.0 ft		385.7	29.0								

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. **10.1** ft.

--_ ft.

14.8 ft.

▼ After ____ hours

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

CLIENT	American Structurepoint, Inc.	BORING#	TB-7-S
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION _	Interstate 64 to State Road 68	STATION	247+97 Line "D"
	Gibson and Warrick Counties, Indiana	OFFSET	10 ft Right

	ECT LOCATIO	-										STATION		40 ft Dialet
		Gibson and	d Warrick (Counti	es, In	diana	<u>a</u>					OFFSET_		10 ft Right
		DRILLING and SA	MPLING INFO	ORMATI	ON		F		_			T	EST DA	ATA
Da	te Started _	1/15/07	Hammer W	/t		140	lbs.							
Da	te Completed	1/15/07	Hammer D	rop _		30	in.							
Dri	ll Foreman _	T. Smoot	Spoon San	npler OD		2.0	in.				est, nts			
Ins	pector	B. Kleeman	Rock Core	Dia			in.				ewe on T	%	je.	
Boi	ring Method	HSA-Truck	Shelby Tub	e OD			in.		Sid		etrati . Incr	ant, 6	omet	
				#				ype	Grap	ater	Pene 6 in.	Sonte	netro	
	SO	IL CLASSIFICATION		fion,	m, ft	ر, ال	ole	ole T	Ver X	ndwa	dard s per	nre (et Pe	arks
	SURF	ACE ELEVATION 414	4.7	Stratum Elevation, f	Stratum Depth, ft	Depth Scale, ft	Samp No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
	Sounding Blank drill to 2 soil/bedrock de	3.5 ft (see Boring No. escription)	TB-7 for			5 10 15								Ground surface elevation estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc. Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines Traffic control with flagmen required INDOT Proj. No. IM-069-0
	Bottom of Sou	ınding at 23.5 ft		391.2	23.5	20								(004) INDOT Des. No. 0500436 Auger refusal at 23.5 ft
	Comple Tu					th to C			Ш					Daving Mathed

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft. ∑ At Completion
 Dry ft.

-- ft.

▼ After ____ hours

___ ft. ☑ Cave Depth

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling
HA - Hand Auger

American Structurepoint, Inc. BORING # TB-8 CLIENT_____ PROJECT NAME ____ Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 1561+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68 STATION ____

		Gibson an	diana					OI	FFSET_		60 ft Left			
		DRILLING and S.	AMPLING INF	ORMATI	ON							Т	EST DA	ATA
Date :	Started	1/19/07	Hammer W	/t.		140 ₺	s.							
Date (Completed	1/20/07	Hammer D			30 ir	ll l							
Drill F	oreman	T. Smoot	Spoon San	npler OD		2.0 ir	.				est,			
Inspe	ector	B. Kleeman	Rock Core	Dia		2.0 ir	.				n Te	. 0	 	
Boring	g Method	HSA-ATV	Shelby Tub	e OD		ir	.		is Sign		ratio	nt, %	mete	
				T +-	Г		4	be	Srap Srap	ter	enet 6 in.	onte	Penetrometer	
	SOI	L CLASSIFICATION		m ijon, f	E #.	# j	. !	e Ty	oler G	ndwa	lard F	ure C	et Pel	rks
	SURFA	CE ELEVATION 41	19.0	Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	<u>8</u>	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket PP-tsf	Remarks
	Brown, moist, s Lab No. 7) A-4					1	┦.			Ā				Ground surface elevation provided by
1++1						-	1 5	SS	X	Ī	1-1-2	25.9	1.0	Bernarndin-Lochmueller & Associates
1++ 1++ 1++ 1++ 1++ 1++ 1++ 1++ 1++ 1++	 Brown and bla		f SILTY	416.0	3.0	\equiv								Associates
- <i>[</i> ///// C	CLAY		OLIT				2 8	SS	X		7-6-6		2.0	
- T	Lab No. 2) A-6	0		413.0	6.0	5 +								Boring was backfilled in
		medium stiff SILTY C	CLAY				3 8	SS	M		3-3-4	23.1		accordance with the INDOT Aquifer Protection Guidelines
	Lab No. 1) A-7	7-6		410.5	8.5	1				Ā				,
В	Brown, weathe			410.5	0.5	_	4 8	SS	М		37-42-50/0.5'			
4						10	_		А					
1						\exists								
						3								
1				405.5	13.5	_								
∄ ^G	Gray, weathere	ed SHALE				-	5 5	SS	X-		32-50/0.5'			
						15—								INDOT Proj. No. IM-069-0
1						3								(004) INDOT Des. No. 0500436
1														
#						†	6 8	SS	\bigvee		20-20-31			
1						20	_		otag					Augor refused at 22.0 ft
1						3								Auger refusal at 23.0 ft
#				396.0	23.0	=								Bedrock cored from 23.0 ft to
G	 Gray SHALE			. 000.0	20.0		C-1 F	RC						25.9 ft Recovery = 97%
						25								RQD = 72%
							_							
1						 R	C-2 F	RC						Bedrock cored from 25.9 ft to 28.0 ft
1)-H (T :	Dada a at 00 0 0		391.0	28.0	1	\dashv							Recovery = 100%
B	sottom of Test	Boring at 28.0 ft												RQD = 71%
	Comple Tur				<u> </u>	th to Cr	<u> </u>	_	Ш					Daring Mathod

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

0.5 ft.

▼ After 24 hours **2.3** ft.

7.5 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING # **TB-9** CLIENT_____ PROJECT NAME ____ Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION 1562+30 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and Warrick Counties, Indiana DRILLING and SAMPLING INFORMATION											60 ft Right
DRI	ILLING and SAMPLING INF	ORMATI	ON							Т	EST DA	ATA
Date Started1/19	/07 Hammer V	Vt		140	lbs.							
Date Completed 1/20	/07 Hammer D	rop _		30	ll ll							
Drill Foreman	moot Spoon Sar	npler OD		2.0	in.				est, nts			
InspectorB. K	(leeman Rock Core	Dia		2.0	in.				on Te	%	e	
Boring Method HSA	\-ATV Shelby Tub	oe OD			in.		Sir		tratic	ent, %	omet	
SOIL CLAS	SSIFICATION	n, ft	_ #	#		Type	r Graph ry Grap	water	d Pene ver 6 in.	e Conte	Penetro	ω
	EVATION 419.3	Stratum Elevation,	Stratum Depth, ft	Depth Scale, f	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
Topsoil (Visual) Dark brown to brown, medium stiff SILTY Cl (Lab No. 2) A-6	very moist, very soft to LAY LOAM	- 418.9	0.4	-	1	SS	X		3-2-2	25.1	0.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
				- - -	2	SS			1-2-1	23.0	1.0	
				5—	3	SS	X		4-3-3	20.9	3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown and gray, seve	rely weathered SHALE	410.8	8.5	10-	4	SS	X	Ā	7-23-34		2.0	
				- - - -	5	SS	X		25-40-50/0.5'			
				15— - - - - -				魔				INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
-gray below 18.0 ft				20-	6	SS	X		23-32-45			
Gray, weathered SHA	 LE	396.1	23.2	25	RC-1	RC						Auger refusal at 23.2 ft Bedrock cored from 23.2 ft to 28.2 ft Recovery = 100%
-slightly weathered be	elow 26.0 ft	391.1	28.2	- -								RQD = 35%
Bottom of Test Boring	g at 28.2 ft	_ 381.1	20.2	_								

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

∑ At Completion

▼ After 24 hours

None ft.

Dry ft. **8.3** ft.

15.4 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING # **TB-10** CLIENT_____ PROJECT NAME ____ Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# **1589+60 Line "A"** PROJECT LOCATION Interstate 64 to State Road 68

Gibson and	Gibson and Warrick Counties, Indiana											
DRILLING and SAI	MPLING INF	ORMATI	ON		-					Т	EST DA	ATA
Date Started 1/23/07	Hammer W	/t		140	lbs.							
Date Completed 1/24/07	Hammer D	rop		30	in.							
Drill Foreman T. Smoot	Spoon San	npler OD		2.0	in.				est, nts			
Inspector B. Kleeman	Rock Core	Dia		2.0	in.				on Te	%	<u></u>	
Boring Method HSA-ATV	Shelby Tub	e OD			in.		hics phics		etratic . Incr	ent, %	omet	
SOIL CLASSIFICATION		m ion, ft	E #,	_ # <u>_</u>	e	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	ırks
SURFACE ELEVATION 411	.8	Stratum Elevation,	Stratum Depth, ft	Depth Scale, f	Sample No.	Samp	Samp	Grour	Stand Blows	Moist	Pocke PP-ts	Remarks
+ + + Topsoil (Visual) + + Brown and gray, moist, medium stiff t + + + + + + + + + + + + + + + + + + +	to stiff SILT	411.3	0.5		1	SS	X		3-4-9	25.3	1.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
- + + + + + + + + + + + + + + + + + + +				5—	2	SS	X	Ţ	5-5-6		1.5	
- +		400.0	0.5	-	3	SS	X		4-3-3		2.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown and gray, moist, medium stiff s	SILTY	403.3	8.5	10-	4	SS	X		2-3-3		2.5	
Brown and gray, moist, soft CLAY (Lab No. 5) A-7-6		398.3	13.5	15	5	SS	X	蘞	2-2-2	22.6	1.0	INDOT Proj. No. IM-069-0 (004)
Gray, severely weathered SHALE		392.8	19.0	20	6	SS	X		13-40-50/0.2'		4.5	INDOT Des. No. 0500436
Gray, shaley LIMESTONE		390.7	21.1	- -	RC-1	RC						Auger refusal at 21.1 ft
Gray, weathered SHALE Bottom of Test Boring at 26.4 ft		385.4	26.4	25—								Bedrock cored from 21.1 ft to 26.4 ft Recovery = 100% RQD = 16%
Solden St. 1 Sol Bolling at 20.4 It			_								_	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

∑ At Completion

▼ After 24 hours

Dry ft. **3.9** ft.

13.1 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# **TB-11** CLIENT_____ PROJECT NAME ____ Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 1590+60 Line "A" PROJECT LOCATION ___ **Interstate 64 to State Road 68** STATION ____

	Gibson and	Warrick (Counti	ies, In	diana					OFFSET		60 ft Left
	DRILLING and SAM	MPLING INFO	ORMATI	ION						Т	EST DA	ATA
Date Started	1/24/07	Hammer W	/t.		140 lk	os.						
	1/25/07	Hammer D	rop		30_ir	ll l						
Drill Foreman	T. Smoot	Spoon Sam	npler OD		2.0 ir	ll l			st,			
Inspector	S. Marcum	Rock Core			2.0 ir	ll l			n Te		 	
Boring Method	HSA-ATV	Shelby Tub	e OD		ir		phics	M	netratio in. Incre	ntent, %	tromete	
SOIL	CLASSIFICATION		um Ition, ft	um h, ft	e, ft	No.	Sampler Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	arks
_	E ELEVATION 408.	.2	Stratum Elevation,	Stratum Depth, ft	Scale, ft	S S	Sam	Green	Stan	Mois	Pock PP-ts	Remarks
Topsoil (Visual) Brown to gray, v CLAY LOAM (Lab No. 2) A-6	ery moist, very soft to	soft SILTY	407.8	0.4		1 S	s X	Ţ	1-1-1	26.5		Ground surface elevation provided by Bernarndin-Lochmueller & Associates
			400.7		5	2 S	S X		2-3-2	24.9		
Brown and gray, LOAM (Lab No. 3) A-6	moist, very soft SILT	Y CLAY	402.7	5.5		3 S	S X		1-1-2	24.5		Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
	, moist, medium stiff S	SILTY	400.2	8.0	10	4 S	s X		5-5-5	24.3		
Gray, moist, med	dium stiff SILTY CLA	<u>_</u>	396.2	12.0				鬮				
	·				15	5 S	S		3-3-5	27.1		INDOT Proj. No. IM-069-0
Brown, weathered	ed SANDSTONE		391.1 390.1 389.2	17.1 18.1 19.0		C-1 R						(004) INDOT Des. No. 0500436 Auger refusal at 17.1 ft Bedrock cored from 17.1 ft to
Gray, weathered	I LIMESTONE		387.7	20.5	20-							22.1 ft Recovery = 96% RQD = 66%
Bottom of Test E			386.1	22.1	1							

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools -- ft.

 ∑ At Completion
 ▼ After 24 hours

-- ft. **1.0** ft. **13.0** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling HA - Hand Auger

CLIENT	American Structurepoint, Inc.	BORING #	TB-11-T
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION _	Interstate 64 to State Road 68	STATION	1590+65 Line "A"
_	Gibson and Warrick Counties, Indiana	OFFSET	60 ft Left

DRILLING and SAMPLING INFORMATION TEST DATA 1/24/07 Date Started Hammer Wt. -- lbs. 1/24/07 Date Completed Hammer Drop ___ in. T. Smoot Drill Foreman Spoon Sampler OD ____ in. Standard Penetration Test, Blows per 6 in. Increments B. Kleeman Rock Core Dia. Inspector -- in. Pocket Penetrometer PP-tsf Sampler Graphics Recovery Graphics Boring Method **HSA-ATV** Shelby Tube OD **3.0** in. Moisture Content, Sample Type Groundwater SOIL CLASSIFICATION Stratum Elevation, Remarks Stratum Depth, ft Sample No. Depth Scale, f SURFACE ELEVATION 408 Ground surface elevation Blank drill to obtain Shelby tube samples estimated based upon Plan and Profile Sheets and Cross-Sections provided by American Structurepoint, Inc. ST Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines 10 INDOT Proj. No. IM-069-0 INDÓT Des. No. 0500436 ST 2 14.0 394.0 Bottom of Test Boring at 14.0 ft

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools -- ft. At Completion -- ft.

 ∇ ▼ After ____ hours

-- ft. -- ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# **TB-12** CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# 16+45 Ramp "B" PROJECT LOCATION Interstate 64 to State Road 68 STATION ____

		Gibson and	Warrick	ıdian	a					FFSET_		20 ft Right		
		DRILLING and SA	MPLING INF	ORMATI	ION		_					Т	EST DA	ATA
Da	ate Started	1/24/07	Hammer V	V t		140	lbs							
	ate Completed	1/25/07	Hammer D			30								
	ill Foreman	T. Smoot	Spoon San	. –)						st, ts			
	spector	S. Marcum	Rock Core								n Teg		_ ا	
	oring Method	HSA-ATV	Shelby Tub	_			in.		တ္သ.ဗ္		atior	ıt, %	nete	
								ā	aphir	je.	enetr in. I	nter	etror	
	SC	IL CLASSIFICATION		n on, ft	= #	¥	υ U	е Тур	er Gr	dwate	ard Po	le Co	t Pen	چ ک
	SURF	ACE ELEVATION 411	1.9	Stratum Elevation, 1	Stratum Depth, ft	Depth Scale, 1	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
+ + + + + + + + + + + + + + + + + + +	Topsoil (Visua Brown, very m (Lab No. 7) A-	noist, very soft SILT	/	411.4	0.5 3.0	- - - -	1	SS	X	Ţ	1-1-1	23.8	0.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
	Brown, moist, (Lab No. 2) A-	medium stiff SILTY CL	AY LOAM			5-	2	SS			3-4-4		2.0	
				403.9	8.0	-	3	SS		幽	4-3-5	18.3	2.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
	Brown and da (Lab No. 1) A-	rk brown, moist, stiff SI 7-6	LTY CLAY	. 100.0	0.0	10-	4	SS	X		6-5-6		3.5	
	Brown, dark b very stiff SILT (Lab No. 4) A-	rown and reddish brow Y CLAY 7-6	n, moist,	399.9	12.0	15—	5	SS	X		7-10-12		4.0	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
	Gray, slightly	ay, severely weathered weathered SANDSTON weathered LIMESTONI ed SHALE		392.9 391.8 391.2 389.4	19.0 20.1 20.7 22.5	20-	6 RC-1	SS RC			43-50/0.2'			Auger refusal at 20.1 ft Bedrock cored from 20.1 ft to 25.1 ft Recovery = 100% RQD = 64%
	Bottom of Tes	t Boring at 25.1 ft		386.8	25.1	25—								

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

∑ At Completion

▼ After 24 hours

-- ft. **1.2** ft.

7.6 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING # TB-13 CLIENT_____ Proposed Interstate 69 Design/Build Project PROJECT NAME _____ 86.00481.0181 JOB# **16+45 Ramp "B"** PROJECT LOCATION Interstate 64 to State Road 68

TROJECT LOCATIO	Gibson and Warrick Counties, Indiana												35 ft Left
					uiaii	<u>a </u>					OFFSET_		
	DRILLING and SAM	MPLING INF	ORMATI	ON		ſi		<u> </u>			T	EST DA	ATA I I
Date Started _	1/22/07	Hammer W	/t		140	_lbs.							
Date Completed	1/23/07	Hammer D	rop _		30	in.							
Drill Foreman	T. Smoot	Spoon San	npler OD		2.0	in.				est,			
Inspector	B. Kleeman	Rock Core	Dia		2.0	in.				on T	%	ter	
Boring Method	HSA-ATV	Shelby Tub	e OD			_in.		Shics		etrati . Incr	ent, 6	omel	
			#			-	/pe	Grag	iter	Pene 6 in	Conte	netr	
SC	DIL CLASSIFICATION		m ijon,	Ε, μ	, ft	<u>e</u>	Je T	very	ydwa	lard s per	ure (et Pe f	rks
_	ACE ELEVATION 413		Stratum Elevation,	Stratum Depth, ft	Depth Scale, 1	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
Light brown a + + soft SILT with + + (Lab No. 7) A		ery soft to				1	SS	X	Ā	1-1-1	31.3	0.5	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
- + + - + + - + +					5—	2	SS			1-1-2	24.7	0.5	
					5 -	3	SS	X		1-2-2	25.4	0.5	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown and lig	ht gray, moist, medium	 stiff SILTY	404.0	9.0	10-	4	SS		쩳	4-3-5	22.0	1.5	
(Lab No. 2) A	n, slightly moist, very st		399.5	13.5	- - - - - - 15—	5	SS	X		7-9-14		3.0	INDOT Proj. No. IM-069-0
Gray, weather			394.5	18.5	20	6	SS	X		25-50/0.5'			(004) (NDOT Des. No. 0500436
Gray LIMEST Gray SHALE	ONE		389.8	23.2 24.8	25	RC-1	RC						Auger refusal at 23.2 ft Bedrock cored from 23.2 ft to 28.2 ft Recovery = 94% RQD = 48%
Bottom of Tes	et Boring at 28.2 ft		384.8	28.2	-								
			-										

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

▼ After 24 hours

None ft. ∑ At Completion

Dry ft. **2.7** ft. **9.6** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. TB-14 BORING# CLIENT 86.00481.0181 Proposed Interstate 69 Design/Build Project JOB# PROJECT NAME 8+85 Ramp "C" PROJECT LOCATION ___ **Interstate 64 to State Road 68** STATION 18 ft Right Gibson and Warrick Counties, Indiana OFFSET

DRILLING and SAMPLING INFORMATION TEST DATA 1/23/07 Hammer Wt. 140 lbs. Date Started 1/24/07 **30** in. Date Completed Hammer Drop T. Smoot Drill Foreman Spoon Sampler OD 2.0 in. Standard Penetration Test, Blows per 6 in. Increments B. Kleeman Rock Core Dia. 2.0 in. Inspector Pocket Penetrometer PP-tsf Sampler Graphics Recovery Graphics Boring Method **HSA-ATV** Shelby Tube OD -- in. Moisture Content, Sample Type Groundwater SOIL CLASSIFICATION Stratum Elevation, Remarks Stratum Depth, ft Sample No. Depth Scale, SURFACE ELEVATION 413.7 413.2 Topsoil (Visual) Ground surface elevation Brown with trace gray, very moist, soft SILTY provided by SS 2-2-3 1 Bernarndin-Lochmueller & CLAY LOAM Associates (Lab No. 2) A-6 2 SS 1-2-2 5 408.2 5.5 Boring was backfilled in Brown and gray, moist, very soft CLAY accordance with the INDOT SS (Lab No. 5) A-7-6 3 1-1-2 Aquifer Protection Guidelines 405.7 8.0 Brown, moist, medium stiff SILTY CLAY 4 SS 3-3-4 (Lab No. 1) A-7-6 10 401.2 12.5 Dark gray, moist, soft SILT (Lab No. 8) A-6 SS 2-2-2 5 28.5 15 INDOT Proj. No. IM-069-0 ÎNDÓT Des. No. 0500436 395.2 18.5 Brown and gray, moist, medium stiff SILTY SS 181 2.0 6 3-4-6 CLAY LOAM 20 (Lab No. 2) A-6 391.2 22.5 Gray, weathered SHALE SS 50/0.3' 7 25 Auger refusal at 28.5 ft Bedrock cored from 28.5 ft to 33.5 ft Recovery = 50% 385.2 28.5 RQD = 50%Grav. weathered SHALE RC -RC-1

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

At Completion ∇

24 hours ▼ After ____

Dry ft. **1.9** ft. 19.0 ft. **Boring Method**

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

CA - Casing Advancer

- Mud Drilling

- Hand Auger HA

Page

2

CLIENT	American Structurepoint, Inc.	BORING #	TB-14
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION _	Interstate 64 to State Road 68	STATION	8+85 Ramp "C"
_	Gibson and Warrick Counties, Indiana	OFFSET	18 ft Right

Gibson and	OFFSET		18 ft Right									
DRILLING and SAM	MPLING INFO	ORMATI					T	EST DA	ATA			
Date Started 1/23/07 Date Completed 1/24/07 Drill Foreman T. Smoot Inspector B. Kleeman Boring Method HSA-ATV	Hammer W Hammer Dr Spoon Sam Rock Core Shelby Tub	rop _ npler OD Dia		2.0	in. in. in.		ohics aphics		Standard Penetration Test, Blows per 6 in. Increments	itent, %	rometer	
SOIL CLASSIFICATION		Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	nple	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	ndard Per ws per 6 i	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
(continued)		Stra Elev	Stra	Scs	Sar No	Sar	Rec	Grc	Sta	Mo	Poc PP.	Re
Bottom of Test Boring at 33.5 ft		380.2	33.5									

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

Dry ft.

▼ After 24 hours

1.9 ft. **19.0** ft. **Boring Method**

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. TB-15 BORING # CLIENT 86.00481.0181 Proposed Interstate 69 Design/Build Project JOB# PROJECT NAME 8+90 Ramp "C" PROJECT LOCATION **Interstate 64 to State Road 68** STATION 20 ft Left Gibson and Warrick Counties, Indiana OFFSET

DRILLING and SAMPLING INFORMATION TEST DATA 1/23/07 Hammer Wt. 140 lbs. Date Started 1/24/07 Date Completed Hammer Drop T. Smoot Drill Foreman Spoon Sampler OD 2.0 in. Standard Penetration Test, Blows per 6 in. Increments B. Kleeman Rock Core Dia. 2.0 in. Inspector Pocket Penetrometer PP-tsf Sampler Graphics Recovery Graphics Boring Method **HSA-ATV** Shelby Tube OD -- in. Moisture Content, Sample Type Groundwater SOIL CLASSIFICATION Stratum Elevation, Remarks Stratum Depth, ft Sample No. Depth Scale, SURFACE ELEVATION 413.5 413.0 Topsoil (Visual) Ground surface elevation Brown and gray, moist, soft SILTY CLAY provided by 3-2-2 SS 1.0 1 Bernarndin-Lochmueller & (Lab No. 1) A-7-6 Associates 3.0 410.5 Brown and gray, moist, very soft to soft SILTY 0.5 2 SS 1-1-2 **CLAY LOAM** (Lab No. 2) A-6 Boring was backfilled in accordance with the INDOT SS 1-2-2 2.5 3 Aquifer Protection Guidelines 405.5 8.0 Brown and gray, moist, soft to medium stiff 4 SS 2-3-7 1.0 SILTY CLAY (Lab No. 1) A-7-6 10 399.5 14.0 SS 5 4-3-4 1.5 Brown and gray, moist, medium stiff CLAY 15 (Lab No. 5) A-7-6 INDOT Proj. No. IM-069-0 INDÓT Des. No. 0500436 395.0 18.5 Brown and gray, moist, very stiff SILTY CLAY SS 7-7-9 4.0 6 LOAM 20 (Lab No. 2) A-6 図 390.0 23.5 7 SS 50/0.1' Brown and gray, severely weathered SHALE 25 Auger refusal at 28.5 ft Bedrock cored from 28.5 ft to 33.5 ft Recovery = 100% 385.0 28.5 **RQD = 44%** Gray, weathered to slightly weathered SHALE RC -RC-1

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

At Completion ∇

24 hours ▼ After ____

4.5 ft.

Dry ft. **2.3** ft.

20.9 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

- Mud Drilling - Hand Auger HA

Page

2

CLIENT	American Structurepoint, Inc.	BORING #	TB-15
PROJECT NAME	Proposed Interstate 69 Design/Build Project	JOB #	86.00481.0181
PROJECT LOCATION _	Interstate 64 to State Road 68	STATION	8+90 Ramp "C"
	Gibson and Warrick Counties, Indiana	OFFSET	20 ft Left

	Gibson and	Warrick	Counti	0	FFSET_		20 ft Left						
	DRILLING and SA	MPLING INF	ORMATI	ON		-					Т	EST DA	NTA
ate Started	1/23/07	Hammer W	/t.		140	lbs.							
				- 11									
	T. Smoot					- 11				est, nts			
nspector	B. Kleeman	Rock Core	Dia			- 11				n Te emer		je j	
oring Method	HSA-ATV	Shelby Tub	e OD			in.	,	ics hics		tratic	nt, %	mete	
SO	IL CLASSIFICATION		m ion, ft	m, ff	, # ,	e e	le Type	ıler Graph very Grap	ndwater	lard Pene s per 6 in.	ure Conte	et Penetro f	ırks
		Stratu	Stratu Depth	Depth Scale	Samp No.	Samp	Samp	Grour	Stand Blows	Moist	Pocke PP-ts	Remarks	
		SHALE	380.0	33.5		5,2							
	Gray, weather	DRILLING and SAI Date Started 1/23/07 Date Completed 1/24/07 Drill Foreman T. Smoot B. Kleeman Boring Method HSA-ATV SOIL CLASSIFICATION (continued)	DRILLING and SAMPLING INFO Date Started 1/23/07 Hammer W Date Completed 1/24/07 Hammer D Drill Foreman T. Smoot Spoon Sam Dispector B. Kleeman Rock Core Boring Method HSA-ATV Shelby Tub SOIL CLASSIFICATION (continued) Gray, weathered to slightly weathered SHALE	DRILLING and SAMPLING INFORMATION of the Started of	DRILLING and SAMPLING INFORMATION Date Started 1/23/07 Hammer Wt. Date Completed 1/24/07 Hammer Drop Drill Foreman T. Smoot Spoon Sampler OD Drill Foreman Rock Core Dia. B. Kleeman Rock Core Dia. Soring Method HSA-ATV Shelby Tube OD SOIL CLASSIFICATION Unit of the start	DRILLING and SAMPLING INFORMATION Date Started 1/23/07 Hammer Wt. 140 Date Completed 1/24/07 Hammer Drop 30 Drill Foreman T. Smoot Spoon Sampler OD 2.0 Drill Foreman B. Kleeman Rock Core Dia. 2.0 Boring Method HSA-ATV Shelby Tube OD SOIL CLASSIFICATION Under Start S	Date Started 1/23/07 Hammer Wt. 140 lbs. Date Completed 1/24/07 Hammer Drop 30 in. Drill Foreman T. Smoot Spoon Sampler OD 2.0 in. Drill Foreman B. Kleeman Rock Core Dia. 2.0 in. Drill Foreman Grow B. Kleeman Rock Core Dia. 2.0 in. Drill Foreman Grow B. Kleeman Rock Core Dia. 2.0 in. Drill Foreman Grow Grow Grow Grow Grow Grow Grow Grow	DRILLING and SAMPLING INFORMATION Date Started 1/23/07 Hammer Wt. 140 lbs. Date Completed 1/24/07 Hammer Drop 30 in. Drill Foreman T. Smoot Spoon Sampler OD 2.0 in. Drill Foreman Rock Core Dia. 2.0 in. Drill Foreman HSA-ATV Shelby Tube OD in. Soring Method HSA-ATV Shelby Tube OD in. SOIL CLASSIFICATION Under the delay of the delay o	DRILLING and SAMPLING INFORMATION Date Started 1/23/07 Hammer Wt. 140 lbs. Date Completed 1/24/07 Hammer Drop 30 in. Drill Foreman T. Smoot Spoon Sampler OD 2.0 in. Drill Foreman B. Kleeman Rock Core Dia. 2.0 in. Drill Foreman HSA-ATV Shelby Tube OD in. Soring Method HSA-ATV Shelby Tube OD in. SOIL CLASSIFICATION Unit of the body o	DRILLING and SAMPLING INFORMATION Date Started 1/23/07 Hammer Wt. 140 lbs. Date Completed 1/24/07 Hammer Drop 30 in. Drill Foreman T. Smoot Spoon Sampler OD 2.0 in. Drill Foreman B. Kleeman Rock Core Dia. 2.0 in. Drill Foreman HSA-ATV Shelby Tube OD in. Soring Method HSA-ATV Shelby Tube OD in. SOIL CLASSIFICATION Up to the complete of th	DRILLING and SAMPLING INFORMATION Date Started	DRILLING and SAMPLING INFORMATION Date Started 1/23/07 Hammer Wt. Date Completed T. Smoot Soring Method Soring Method Graphics Graphics Gray, weathered to slightly weathered SHALE DRILLING and SAMPLING INFORMATION Table 1/24/07 Hammer Drop 30 in. 2.0 in. B. Kleeman Rock Core Dia. 2.0 in. Solic CLASSIFICATION (continued) Solic Classification (DRILLING and SAMPLING INFORMATION TEST DA Date Started 1/23/07

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

4.5 ft. Noted on Drilling Tools Dry ft.

▼ After 24 hours

2.3 ft. **20.9** ft. **Boring Method**

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

Page 2 of 2

American Structurepoint, Inc. TL-16 BORING # CLIENT 86.00481.0181 Proposed Interstate 69 Design/Build Project JOB# PROJECT NAME 1494+00 Line "A" PROJECT LOCATION ___ **Interstate 64 to State Road 68** STATION 550 ft Right Gibson and Warrick Counties, Indiana OFFSET

DRILLING and SAMPLING INFORMATION TEST DATA 1/9/07 140 lbs. Date Started Hammer Wt 1/9/07 Date Completed Hammer Drop **30** in. T. Smoot Drill Foreman Spoon Sampler OD ____**2.0**_ in. Standard Penetration Test, Blows per 6 in. Increments S. Marcum Inspector Rock Core Dia. Pocket Penetrometer PP-tsf Sampler Graphics Recovery Graphics Boring Method **HSA-ATV** Shelby Tube OD ___ in. Moisture Content, Sample Type Groundwater SOIL CLASSIFICATION Stratum Elevation, Remarks Stratum Depth, ft Sample No. Depth Scale, 1 SURFACE ELEVATION 446.4 446.2 Topsoil (Visual) Ground surface elevation Brown, gray and dark brown, moist, medium stiff provided by 2-2-5 SS 24.9 1 Bernarndin-Lochmueller & to very stiff SILTY CLAY LOAM Associates (Lab No. 2) A-6 7-9-9 2.5 2 SS Boring was backfilled in accordance with the INDOT 3.0 SS 7-7-10 18.0 3 Aquifer Protection Guidelines 437.9 8.5 Brown, severely weathered SHALE 4 SS 50/0.5' 10 SS 40-50/0.4 5 15 INDOT Proj. No. IM-069-0 INDÓT Des. No. 0500436 SS 50/0.5' 6 20 -gray below 22.0 ft SS 50/0.3' 7 25 417.4 29.0 50/0.5 8 Bottom of Test Boring at 29.0 ft

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

-- ft.

-- ft.

At Completion Dry ft. ∇

▼ After ____ hours

Boring Method

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

- Hand Auger HA

CLIENT American Structurepoint, Inc. BORING # TL-17 PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB # _____ STATION _____1494+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

		Gibson and	l Warrick	Count	ies, In	<u>idiana</u>				0	FFSET_		350 ft Left
		DRILLING and SA	MPLING INF	ORMAT	ION						Т	EST DA	ATA
Da	te Started	1/8/07	Hammer W	/t.		140 lb	s.						
	te Completed	1/9/07	Hammer D			30 in	ll l						
	ll Foreman	B. Kleeman	Spoon San				ll l			st, its			
Ins	pector	S. Marcum	Rock Core			2.0 in	ll l			n Te men	_	ي ا	
	ring Method	HSA-ATV	Shelby Tub			in		ics hics		tration	nt, %	mete	
				_ #	1	1 1	၂ §	ìraph Grab	ter	Penei 6 in.	onte	netro	
	SO	IL CLASSIFICATION		rtion,	h, ff	9, ft	No. Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	arks
	SU	RFACE ELEVATION		Stratum Elevation, f	Stratum Depth, ft	Depth Scale, f	No. Sample	Sam	Grou	Stand	Mois	Pock PP-ts	Remarks
-	Topsoil (Visua	l) medium stiff to stiff SII			0.2								INDOT Proj. No. IM-069-0 (004)
	LOAM		IY CLAY				1 SS	X	Ā	2-3-3	24.3	1.0	INDOT Des. No. 0500436
	(Lab No. 2) A-	6						П					
							2 SS	X		3-5-7	15.9	1.25	
1					6.0	5		Н					Boring was backfilled in
	Reddish brown	n and gray, severely we	athered	1	0.0		3 SS			42-50/0.4'			accordance with the INDOT Aquifer Protection Guidelines
北	SANDSTONE												/ Admin 1 Totalion and miles
王	-brown below	8.0 ft				+	4 ss	×	顧	50/0.2'			
1						10-							
1]							Auger refusal at 12.3 ft
╬				-	12.3		0.4 50						D
#	Gray, slightly v	veathered SANDSTON	IE.				C-1 RC						Bedrock cored from 12.3 ft to 15.4 ft
#						15—							Recovery = 100% RQD = 100%
							C-2 RC	Н					
士													Bedrock cored from 15.4 ft to
址						7							20.4 ft Recovery = 100%
1]							RQD = 94%
士						20—		Ш					
#						- R(C-3 RC						Bedrock cored from 20.4 ft to 25.4 ft
丰													Recovery = 100% RQD = 100%
#													RQD = 100%
丰					25.4	25							
	Bottom of Tes	t Boring at 25.4 ft		1	25.4	_							
		-											
$ldsymbol{ldsymbol{ldsymbol{ldsymbol{eta}}}$								\perp				<u> </u>	

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

• Noted on Drilling Tools None ft. **Dry** ft.

1.9 ft.

8.9 ft.

▼ After 24 hours

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING# TL-18 CLIENT_____ Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 PROJECT NAME _____ 1503+00 Line "A" PROJECT LOCATION ___ **Interstate 64 to State Road 68** STATION ____ 210 ft Diaht Gibson and Warrick Counties Indiana

	Gibson and	Warrick	<u>Count</u>	ies, In	diana	1				OI	FFSET_		210 ft Right
	DRILLING and SA	ORMAT	ION						Т	EST DA	ATA		
Date Started	1/9/07	Hammer W	/t.		140	lbs.							
Date Completed	1/9/07	Hammer D	rop		<u>30</u> i	ll l							
Drill Foreman	T. Smoot	Spoon San)		ll ll				st, ts			
Inspector	S. Marcum	Rock Core		-	2.0	ll ll				n Te men		ي ا	
Boring Method	HSA-ATV	Shelby Tub	_		i			Sics		ratio	nt, %	mete	
				1			e	aphi	e	enet 3 in.	ontei	etro	
so	IL CLASSIFICATION		Stratum Elevation, ft	Stratum Depth, ft		ble	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	Remarks
SU	RFACE ELEVATION		Strat		Depth Scale, f	Sample No.	Sam	Sam	Gro	Star	Mois	Pocl PP-t	_
	rk brown, moist, mediu	$\frac{1}{m}$ stiff $\frac{1}{m}$	•	0.3		1	ss			4-4-4			INDOT Proj. No. IM-069-0 (004)
SILTY CLAY L (Lab No. 2) A-					=			4					ÌNDÓT Des. No. 0500436
						2	ss	\forall		3-4-4	22.3		
				5.5	5-			4					Daring was healfilled in
Brown and gra (Lab No. 1) A-	ay, moist, stiff SILTY CI	_AY			1	3	ss			4-6-8			Boring was backfilled in accordance with the INDOT
(Lab No. 1) A-	7-0				‡	_	-	4					Aquifer Protection Guidelines
Drawn and do	rk brown, severely wear			8.5		4	ss			32-50/0.5'			
SHALE	ik blowii, severely wea	iriereu			10-	-	33			32-30/0.5			
#					"								
1													
1					E								
1					/ <u> </u>	5_	ss			50/0.4'			
1					15—								Auger refusal at 18.2 ft
					\exists								
1				18.2									
Gray, weather	ed to slightly weathered	SHALE			‡	RC-1	RC						Bedrock cored from 18.2 ft to 20.1 ft
-					20-			Н					Recovery = 100%
<u></u>]	RC-2	RC						RQD = 74%
					=								Bedrock cored from 20.1 ft to
													25.2 ft
				25.2] 25								Recovery = 99% RQD = 82%
Bottom of Tes	t Boring at 25.2 ft		1	20.2	257								
								Ш					

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

_-__ ft.

 ∑ At Completion
 __Dry_ft. ▼ After ____ hours --_ ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING # TL-19 CLIENT_____ PROJECT NAME ____ Proposed Interstate 69 Design/Build Project JOB# 86.00481.0181 1504+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68 STATION __

	Gibson and	Warrick	Count	ies, In	dian	a				0	FFSET_		670 ft Left
	DRILLING and SA	MPLING INF	ORMAT	ION		_					Т	EST DA	ATA
Date Started	1/9/07	Hammer W	√t.		140	lbs.							
Date Completed	1/10/07	Hammer D			30								
Drill Foreman	T. Smoot	Spoon San)		- 11				st, ts			
Inspector		Rock Core		-						n Te men		_ ا	
Boring Method	HSA-ATV	Shelby Tub	_			· II		cs ics		ratio	nt, %	nete	
_			1		1)e	aphi	-e	enet 3 in. l	onter	etro	
SC	DIL CLASSIFICATION		Stratum Elevation, ft	tum th, ft	e, ft	ble	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
SI	JRFACE ELEVATION		Strati	Stratum Depth, ft	Depth Scale, 1	Sample No.	Sam	Sam Rec	Grou	Stan	Mois	Poct PP-t	
Topsoil (Visua Brown and gr SILTY CLAY (Lab No. 2) A	ay, moist, medium stiff	to stiff — — /		0.3	- - - -	1	SS	X		2-4-6	24.0	2.5	INDOT Proj. No. IM-069-0 (004) INDOT Des. No. 0500436
					5-	2	SS			7-8-13		3.25	
Brown, seven	ely weathered SANDST	 ONE		6.0 8.0	- -	3	SS			13-13-16		2.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown and da	ark brown, severely wea	thered			10-	4	SS	X	Ā	25-35-47			
-					- - - - - - 15 — -	5 /	SS	×		50/0.4'			
-gray below 1	8.0 ft				20-	6	SS	×	2	50/0.5'			
-					25—	7.,	SS	X		50/0.5'			
Bottom of Te:	st Boring at 29.0 ft		-	29.0	- - -	8	SS	X		50/0.5'			

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 Dry ft.

▼ After 24 hours

8.9 ft. **20.1** ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling

HA - Hand Auger

American Structurepoint, Inc. BORING # TL-20 CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION 1582+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

Gibson and	l Warrick	Counti					OFFSET		160 ft Right			
DRILLING and SA	MPLING INF	ORMATI	ON		-					Т	EST DA	ATA
Date Started	Hammer W	/t		140	lbs.							
Date Completed 1/23/07	Hammer D	rop _		30	- 11							
Drill Foreman T. Smoot	Spoon San	npler OD		2.0	in.				est, nts			
Inspector B. Kleeman	Rock Core	Dia			in.				on Te	%	 	
Boring Method HSA-ATV	Shelby Tub	e OD			in.		nics		etratic . Incr	ant, %	omet	
SOIL CLASSIFICATION		n ion, ft	E#,	#	<u>e</u>	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	ξ
SURFACE ELEVATION 418	3.7	Stratum Elevation,	Stratum Depth, ft	Depth Scale, f	Sample No.	Samp	Samp	Grour	Stand Blows	Moist	Pocke PP-tsl	Remarks
Topsoil (Visual) Brown and gray, moist, medium stiff SILTY CLAY LOAM (Lab No. 2) A-6		418.2	0.5	- - - -	1	SS	X		2-3-3		2.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
				5—	2	SS	X	Ţ	5-4-4		2.5	
				- - -	3	SS	X		5-5-7		3.0	Boring was backfilled in accordance with the INDOT Aquifer Protection Guidelines
Brown, moist, stiff to medium stiff SII (Lab No. 4) A-7-6	TY CLAY	409.7	9.0	10	4	SS	X	¥	2-5-6		2.75	
				15—	5	SS	X		4-3-4		2.5	
Gray, moist, soft CLAY + + (Lab No. 5) A-7-6 + + Dark gray, very moist SILT + + (Lab No. 8) A-6	 	400.2 399.7	18.5 19.0	20-	6	SS	X		1-2-2		1.0	
Gray, severely weathered SHALE		394.7	24.0	25—	7	SS	X		5-20-50/0.5	;'	4.0	
		389.2	29.5	 - - -	8	SS	X		4-50/0.5'			

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

∑ At Completion

▼ After 24 hours

11.0 ft. **3.9** ft.

20.9 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. BORING# TL-21 CLIENT___ Proposed Interstate 69 Design/Build Project 86.00481.0181 PROJECT NAME JOB# 1589+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68 **STATION**

PROJECT LOCATION Interstate 64		STATION		1509+00 Line A						
Gibson and	Warrick (<u>Counti</u>	es, In	diana				OFFSET		450 ft Left
DRILLING and SAM	IPLING INFO	ORMATI	ON					T	EST DA	ATA
Date Started	Hammer W	/t		140 lbs.						
Date Completed 1/23/07	Hammer D	rop _		30 in.						
Drill Foreman T. Smoot	Spoon Sam	pler OD		2.0 in.			est, nts			
Inspector B. Kleeman_	Rock Core	Dia		in.			on T	%	je j	
Boring Method HSA-ATV	Shelby Tub	e OD		in.		Shics	etrati . Incr	ent, 6	ome	
OOU OF VOOLETON		#			ype	Sampler Graphics Recovery Graphics Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content,	Pocket Penetrometer PP-tsf	
SOIL CLASSIFICATION		um ation,	um h, ft	th e, ft ple	Sample Type	Sampler Grap Recovery Gra Groundwater	dard /s pe	ture	cet P	Remarks
SURFACE ELEVATION 424.	7	Stratum Elevation,	Stratum Depth, ft	Depth Scale, ft Sample No.	Sam	Reco	Stan	Mois	Pock PP-t	Rem
Topsoil (Visual) Reddish brown and gray, moist, mediu SILTY CLAY LOAM (Lab No. 2) A-6	m stiff - /	424.2 421.7	0.5 3.0	- - 1	ss		2-5-5		3.0	Ground surface elevation provided by Bernarndin-Lochmueller & Associates
+ + Brown, very moist, stiff SILT + + (Lab No. 9) A-4				2	ss	Ŭ V	6-6-7	18.9	3.0	
Brown, moist to slightly moist, stiff to n	 nedium	419.2	5.5	5						Boring was backfilled in accordance with the INDOT
stiff SILTY CLAY LOAM (Lab No. 3) A-6				- 3	ss		5-6-6	21.1	2.5	Aquifer Protection Guidelines
				- 4	ss		5-5-5	26.4	2.5	
- + + Brown, very moist, very soft to medium - + + (Lab No. 6) A-4 - + + + + + + + + + + + + + + + + + + +	n stiff SILT	411.7	13.0	10	ss		2-1-1	28.2	0.25	
Brown, moist, medium stiff CLAY (Lab No. 5) A-7-6		405.1	19.6	- 6 20	ss		5-4-3	20.9	2.5	
Gray, very moist, very soft CLAY (Lab No. 5) A-7-6		401.2	23.5	7 25	ss		1-1-1	31.3	0.5	
Sample Type		394.7	30.0	- 8 - 8	ss		1-1-1	43.9	0.25	Paring Mathad

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools

▼ After 24 hours

■ Cave Depth

None ft. Dry ft.

3.2 ft.

22.6 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

CLIENT	American Structurepoint, Inc.	BORING #	TL-21
PROJECT NAME	Proposed Interstate 69 Design/Build Project	 JOB #	86.00481.0181
PROJECT LOCATION	Interstate 64 to State Road 68	STATION	1589+00 Line "A"
	Gibson and Warrick Counties, Indiana	OFFSET_	450 ft Left

ROJECT LOCATIO	N <u>Interstate (</u>	o4 to State	68							STATION		1569+00 Line A	
	Gibson and	d Warrick	<u>idian</u>	<u>a</u>					OFFSET_		450 ft Left		
	DRILLING and SA	AMPLING INF	ORMATI	ON		г					Т	EST DA	ATA
Date Started	1/22/07	Hammer W	/t		140	lbs.							
Date Completed	1/23/07	Hammer D				- 11							
Drill Foreman	T. Smoot	Spoon San				ll ll				est, nts			
Inspector	B. Kleeman	Rock Core	Dia			in.				on Te	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 	
Boring Method	HSA-ATV	Shelby Tub	e OD			_in.		rics hics		tratic	int, %	met	
				I	Г	괻	/be	Grap	ıter	Pene 6 in.	Conte	netro	
sc	DIL CLASSIFICATION		Ejon,	E #	#	<u>e</u>	ole T	very	adwa	dard I	nre (et Pe	arks
	(continued)		Stratum Elevation, ft	Stratum Depth, ft	Depth Scale, ft	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moisture Content, %	Pocket Penetrometer PP-tsf	Remarks
Gray, moist, v	νш	0, 0		0, 2	- 0)		$\overline{}$	О/ Ш			ш		
(Lab No. 5) A	-7-6				-	1							
					_								
					-								
			390.2	34.5 35.0	35—	9	SS	X		4-17-26	27.6		
SANDSTONE	l brown, severely weatl	riered	000.7	00.0	35—								
Bottom of Tes	st Boring at 35.0 ft												
								$ \ \ $					
								$ \ \ $					
								$ \ \ $					
								$ \ \ $					
								$ \ \ $					
						$oldsymbol{oldsymbol{\sqcup}}$		ш			1		

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

 ∑ At Completion
 Dry ft. ▼ After 24 hours **3.2** ft.

22.6 ft.

Boring Method

HSA - Hollow Stem Augers
CFA - Continuous Flight Augers
CA - Casing Advancer
MD - Mud Drilling

HA - Hand Auger

Page 2 of

2

American Structurepoint, Inc. BORING # **TL-22** CLIENT_____ PROJECT NAME Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# STATION _____1594+00 Line "A" PROJECT LOCATION Interstate 64 to State Road 68

	Gibson and	Warrick	Counti	ies, In	dian	а					FFSET_	-	380 ft Right
	DRILLING and SAN	IPLING INF	ORMATI	ON		_					Т	EST DA	ATA
Date Started	1/18/07	Hammer V	/t		140	lbs.							
Date Completed	1/19/07	Hammer D	rop		30	- 11							
Drill Foreman	T. Smoot	Spoon San	npler OD		2.0	in.				est, nts			
Inspector	B. Kleeman	Rock Core	Dia			in.				on Te emer		<u></u>	
Boring Method	HSA-ATV	Shelby Tub	e OD			in.		Sics		tratic	nt, %	met	
			#			\blacksquare	ype	Grap	ater	Pene 6 in.	Moisture Content,	enetro	
SC	OIL CLASSIFICATION		fion,	um h, ft	h 9, ft	ole	ole T	oler (ndwa	dard s per	ture (et Pe	arks
SURF	ACE ELEVATION 415.	6	Stratum Elevation, 1	Stratum Depth, ft	Depth Scale, 1	Sample No.	Sample Type	Sampler Graphics Recovery Graphics	Groundwater	Standard Penetration Test, Blows per 6 in. Increments	Moist	Pocket Penetrometer PP-tsf	Remarks
- LOAM	soft to medium stiff SIL	TY CLAY	415.1	0.5	1111	1	SS	X	Ā	2-2-3		1.5	Ground surface elevation provided by Bernarndin-Lochmueller &
(Lab No. 2) A	-6				-								Associates
						2	SS	X		4-4-4		2.5	
			409.6	6.0	5-								Boring was backfilled in
	stiff SILTY CLAY LOAN	<u> </u>	1 400.0	0.0	-	3	SS			5-5-7	18.5	2.75	accordance with the INDOT Aquifer Protection Guidelines
(Lab No. 2) A	-6				-								Adulta Frotestion Suidelines
					-	4	SS	H		4-5-6	21.1	2.75	
					10-			А					
Brown and or	ay, moist, very stiff SILT	Y CI AY	404.6	11.0									
(Lab No. 1) A	-7-6	1 00 (1			_				123 1				
					-		00		- E	0.00			
					15—	5	SS	X		6-9-9			
					-								
					_								
			397.1	18.5									
Gray, severely	weathered SHALE					6	SS	\bigvee		19-20-19			
1					20 —								
1					_								
					-								
					-	7	SS	\bowtie		50/0.3'			
-					25—								
#					_								
1			386.8	28.8	-		00			F0/0 01			
Bottom of Tes	st Boring at 28.8 ft					_8_/	SS			50/0.3'			

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

Dry ft.

 ∑ At Completion
 ▼ After 24 hours

0.9 ft. **12.9** ft. **Boring Method**

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer

MD - Mud Drilling HA - Hand Auger

American Structurepoint, Inc. TB-25 BORING # CLIENT Proposed Interstate 69 Design/Build Project 86.00481.0181 JOB# PROJECT NAME 14+00 Ramp "A-1" PROJECT LOCATION ___ **Interstate 64 to State Road 68** STATION 18 ft Right Gibson and Warrick Counties, Indiana OFFSET

DRILLING and SAMPLING INFORMATION TEST DATA 1/8/07 Date Started Hammer Wt. 140 lbs. 1/9/07 Date Completed Hammer Drop **30** in. T. Smoot Drill Foreman Spoon Sampler OD **2.0** in. Standard Penetration Test, Blows per 6 in. Increments S. Marcum Rock Core Dia. 2.0 in. Inspector Pocket Penetrometer PP-tsf Sampler Graphics Recovery Graphics Boring Method **HSA-ATV** Shelby Tube OD -- in. Moisture Content, Sample Type Groundwater SOIL CLASSIFICATION Stratum Elevation, Remarks Stratum Depth, ft Sample No. Depth Scale, SURFACE ELEVATION 447 446.7 Topsoil (Visual) Ground surface elevation Brown, moist, medium stiff SILTY CLAY LOAM provided by SS 2-4-4 1 Bernarndin-Lochmueller & (Lab No. 2) A-6 Associates 2 SS 4-5-9 Boring was backfilled in accordance with the INDOT 6.0 441.0 Aguifer Protection Guidelines Brown and dark brown, severely weathered SS 23-50/0.5' 3 161 INDOT Proj. No. IM-069-0 4 SS 50/0.4' (004)**ÎNDÓT Des. No. 0500436** 10 Auger refusal at 13.0 ft 434.0 13.0 RC Bedrock cored from 13.0 ft to Gray, weathered to slightly weathered SHALE RC-1 15.5 ft Recovery = 100% 15 RQD = 100%RC RC-2 Bedrock cored from 15.5 ft to 20.5 ft Recovery = 100% RQD = 78% 20 RC Bedrock cored from 20.5 ft to RC-3 25.5 ft Recovery = 100% RQD = 76%25 421.5 25.5 Bottom of Test Boring at 25.5 ft

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core

CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

Noted on Drilling Tools None ft.

At Completion ∇ **24** hours ▼ After ____

Dry ft. **1.3** ft.

7.8 ft. **Boring Method**

HSA - Hollow Stem Augers

CFA - Continuous Flight Augers CA - Casing Advancer

- Mud Drilling - Hand Auger HA

CLIENT American Structurepoint, Inc. BORING # **TB-26** PROJECT NAME Proposed Interstate 69 Design/Build Project JOB # _____ 86.00481.0181 STATION 14+20 Ramp "A-1" PROJECT LOCATION Interstate 64 to State Road 68

Brown and gray, moist, medium stiff SiLTY CLAY LOAM (Lab No. 2) A-6 Brown and dark brown, severely weathered SHALE 442.0 6.0 442.0 6.0 442.0 6.0 43.0 12.0 RC-1 RC RC RC RC-2 RC RC-2 RC RC-3 RC-3 RC RC-3 RC RC RC RC RC RC RC RC RC R		Gibson and	l Warrick	Count	ies, In	diana					DFFSET		27 ft Left
Date Completed 1/9/07 Hammer Drop 30 in. Drill Foreman T. Smoot Spoon Sampler OD 2.0 in. Inspector S. Marcum Rock Core Dia. 2.0 in. Boring Method HSA-ATV Shelby Tube ODin. SOIL CLASSIFICATION Surpression of the state o		DRILLING and SAI	ORMATI	ON						Т	EST DA	ATA	
Date Completed 1/9/07 Hammer Drop 30 in. Drill Foreman T. Smoot Spoon Sampler OD 2.0 in. Inspector S. Marcum Rock Core Dia. 2.0 in. Boring Method HSA-ATV Shelby Tube ODin. SOIL CLASSIFICATION Surpression of the state o	Date Started	1/8/07	Hammer V	√t.		140 lb	s.						
Drill Foreman T. Smoot Spoon Sampler OD 2.0 in. Inspector S. Marcum Rock Core Dia. 2.0 in. Boring Method HSA-ATV Shelby Tube OD in. SOIL CLASSIFICATION USURFACE ELEVATION 448 Explain 150 and	Date Completed		Hammer D				ll l						
Inspector S. Marcum Rock Core Dia. Soil CLASSIFICATION SURFACE ELEVATION 448 Fig. 3.3-3-5 Brown and dark brown, severely weathered SHALE Soil CLASSIFICATION SURFACE ELEVATION 448 Fig. 3.3-3-5 STALE Rock Core Dia. 2.0 in. Soil CLASSIFICATION Fig. 4.47.8 O.2 1 SS A42.0 6.0 12.0 RC-2 RC RC RC RC RC RC Bedrock Core Dia. Sp. 4.49.0 Auguer refusal at 12.0 ft Bedrock cored from 12.1 fs.8 ft Recovery = 98% RQD = 98% RQD = 100%			Spoon San	npler OD	1		ll l			st, ts			
Topsoil (Visual) Brown and gray, moist, medium stiff SiLTY 447.8 0.2 1 SS	Inspector						ll l			n Te men		ي ا	
Topsoil (Visual) Brown and gray, moist, medium stiff SiLTY 447.8 0.2 1 SS				_			ll l	ics		ratio	nt, %	mete	
Topsoil (Visual) Brown and gray, moist, medium stiff SiLTY 447.8 0.2 1 SS				T #-	1		<u> </u> 8	raph Grap	Ē	enet 6 in.	onte	netro	
Topsoil (Visual) Brown and gray, moist, medium stiff SiLTY CLAY LOAM (Lab No. 2) A-6 Brown and dark brown, severely weathered SHALE Gray, weathered to slightly weathered SHALE 442.0 Gray, weathered to slightly weathered SHALE 436.0 12.0 RC-1 RC RC Ground surface elevatio provided by Bernarmdin-Lochmueller Associates Boring was backfilled in accordance with the IND Aquifer Protection Guide INDOT Proj. No. IM-069 (004) INDOT Des. No. 05004: Auger refusal at 12.0 ft Bedrock cored from 12.1 15.8 ft Recovery = 98% RQD = 98% RC-2 RC RC-3 RC-3 RC-3 RC-3 RC-4 Boring was backfilled in accordance with the IND Aquifer Protection Guide Auger refusal at 12.0 ft Bedrock cored from 15.1 20.8 ft Recovery = 98% RQD = 100% Bedrock cored from 20.1 15.0 15.0 15.0 15.0 15.0 15.0 15.0 1	sc	DIL CLASSIFICATION		m ijon, f	E #,	_ # e	i se Ty	er G	dwa	lard F	ure C	et Pe	ırks
Brown and gray, moist, medium stiff SiLTY CLAY LOAM (Lab No. 2) A-6 Brown and dark brown, severely weathered Brown and dark brown, severely weathered HA2.0 A42.0 A42.0 Brown and dark brown, severely weathered Brown and dark brown, se			8			Depth Scale Samp	No.	Samp	Groun	Stand	Moist	Pocke PP-ts	Rema
Brown and dark brown, severely weathered SHALE Brown and dark brown, severely weathered SHALE 8-20-50 RC-1 RC-1 RC-2 RC-2 RC-3 RC-3 RC-2 RC-3 Boring was backfilled in accordance with the INL Aquifer Protection Guide INDOT Proj. No. IM-068 (004) INDOT Des. No. 050043 Auger refusal at 12.0 ft Bedrock cored from 12.1 15.8 ft Recovery = 98% RQD = 98% Bedrock cored from 15.2 20.8 ft Recovery = 100% RQD = 100% Bedrock cored from 20.3	Brown and gr	ay, moist, medium stiff s	SĪLTY — J	447.8	0.2		1 SS			3-4-5			Bernarndin-Lochmueller &
Brown and dark brown, severely weathered SHALE 442.0 6.0 3 SS 8-20-50 INDOT Proj. No. IM-068 (004) INDOT Des. No. 050043 Auger refusal at 12.0 ft Bedrock cored from 12.1 15.8 ft Recovery = 98% RQD = 98% RC-2 RC-2 RC-3 RC-3 RC-3 RC-3 RC-3 RC-4 Brown and dark brown, severely weathered Aquifer Protection Guide INDOT Proj. No. IM-068 (004) INDOT Des. No. 050043 Auger refusal at 12.0 ft Bedrock cored from 15.1 20.8 ft Recovery = 100% RC-1 RC-2 RC-3 RC-3 RC-3 RC-3 RC-3 RC-4 Bedrock cored from 20.3						l →	2 SS		<u>*</u>	3-3-5			
Gray, weathered to slightly weathered SHALE 436.0 12.0 RC-1 RC SRC SRC SIGNUT SHALE 436.0 12.0 RC-2 RC-2 RC SRC SRC SRC SRC SHALE 15.8 ft Recovery = 98% RQD = 98% RQD = 98% RQD = 100% RQD		 rk brown, severely weat	 thered	442.0	6.0		3 SS		藺	8-20-50			Aquifer Protection Guidelines
Gray, weathered to slightly weathered SHALE 436.0 12.0 RC-1 RC RC-1 RC-1 RC-2 RC-2 RC-2 RC-2 RC-2 RC-3 RC-3													(004)
Gray, weathered to slightly weathered SHALE Gray, weathered to slightly weathered SHALE RC-1 RC RC-2 RC RC-2 RC RC-3 RC RC-3 RC RC-3 RC Bedrock cored from 15.1 20.8 ft Recovery = 100% RQD = 100% RQD = 100% Bedrock cored from 20.1 RC RC-3 RC						I ⊣`─	4_/ SS			50/0.4'			INDOT Des. No. 0500436
Gray, weathered to slightly weathered SHALE RC-1 RC RC-1 RC RC-2 RC Bedrock cored from 12.0 RC-2 RC Bedrock cored from 15.0 Bedrock cored from 15.0 RC-3 RC RC-3 RC Bedrock cored from 20.0 Bedrock cored from 20.0				126.0	12.0								Auger refusal at 12.0 ft
RC-2 RC Bedrock cored from 15.8 20.8 ft Recovery = 100% RQD = 100% Bedrock cored from 20.8 ft Recovery = 100%	Gray, weather	red to slightly weathered	SHALE	. 430.0	12.0		C-1 RC						Bedrock cored from 12.0 ft to 15.8 ft Recovery = 98%
20.8 ft Recovery = 100% RQD = 100% Bedrock cored from 20.8	1					15							RQD = 98%
RC-3 RC Bedrock cored from 20.0						R	C-2 RC						Recovery = 100%
						20							
25.8 ft Recovery = 100% RQD = 98%						_R(C-3 RC						Bedrock cored from 20.8 ft to 25.8 ft Recovery = 100% RQD = 98%
422.2 25.8 25 - 1	Bottom of Tes	st Boring at 25.8 ft		422.2	25.8	25							

Sample Type

SS - Driven Split Spoon ST - Pressed Shelby Tube

CA - Continuous Flight Auger

RC - Rock Core CU - Cuttings

CT - Continuous Tube

Depth to Groundwater

• Noted on Drilling Tools None ft.

 ∑ At Completion
 ☐ ▼ After 24 hours

Dry ft. **3.9** ft.

7.1 ft.

Boring Method

HSA - Hollow Stem Augers CFA - Continuous Flight Augers

CA - Casing Advancer MD - Mud Drilling

HA - Hand Auger

Page 1 of

APPENDIX C

SUMMARY OF LABORATORY CLASSIFICATION TEST RESULTS
SUMMARY OF SPECIAL LABORATORY TEST RESULTS
GRAIN SIZE DISTRIBUTION CURVES
STANDARD PROCTOR MOISTURE DENSITY RELATIONSHIP TEST RESULTS
UNCONFINED COMPRESSION TEST RESULTS

SUMMARY OF LABORATORY CLASSIFICATION TEST RESULTS Proposed Interstate 69 Design / Build Project Interstate 64 to State Road 68 Gibson and Warrick Counties, Indiana INDOT Des. No. 0500436 INDOT Project No. IM-069-0 (004)500436

1		
)		
?		
۲,	8	
•	0	
Ś		
-	8	
1	A	
	S	
)	<u></u>	
5	8	
4		
ì	Ö	
	Z	
}	<u>.</u>	
4	ည္က	
	·Ě	
5	2	
2	\Box	
•	\circ	
1	Ξ	
1 or (or) or THE OF 1 or 1 or 1	ATC Project No.: 86.00481.0181	
)	•	
١		
•		

											_
imits	Id	22	15	81	30	35	ĸ٦	4	12	9	크
Atterberg Limits	PL	20	20	20	20	24	22	23	23	50	19
Atte	1	42	35	38	50	59	27	27	35	26	33
	Percent Clay,	37.3	27.6	27.6	37.7	57.9	14.6	7.1	16.3	12.7	25.7
	Percent Silt,	54.3	66.4	71.5	61.2	40.6	84.8	85.1	83.2	85.3	71.2
u,	Percent Sand,	8.4	5.8	6'0	1.1	1.5	9.0	3.9	0.5	2.0	2.8
Distributio	Percent Gravel,	0.0	0.2	0'0	0.0	0.0	0.0	3.9	0.0	0.0	0.3
Particle Size Distribution	Percent passing No. 200 Sieve, %	91.6	94.0	99.1	6.86	98.5	99.4	92.2	99.5	98.0	96.9
	Percent passing No. 40 Sieve, %	96.5	99.3	99.9	0.001	9.66	100.0	93.7	100.0	99.4	98.7
	Percent passing No. 10 Sieve, %	0.001	8.66	0'001	0.001	100.0	100.0	96.1	0'001	100.0	99.7
ation	AASHTO	A-7-6 (21)	A-6 (14)	A-6 (19)	A-7-6 (32)	A-7-6 (39)	A-4 (4)	A-4 (3)	A-6 (13)	A-4 (5)	A-6 (14)
Soil Classification	Textural	Silty Clay	Silty Clay Loam	Silty Clay Loam	Silty Clay	Clay	Silt	Silt	Silt	Silt	Silty Clay Loam
	Depth, feet	8.5 - 10.0	13.5 - 15.0	6.0 - 7.5	13.5 - 15.0	28.5-30.0	13.5 - 15.0	1.0 - 2.5	13.5 - 15.0	3.5 - 5.0	1.0 - 5.0
	Sample No.	SS-4	SS-5	SS-3	SS-5	8-SS	SS-5	1-SS	SS-5	Z-SS	Bulk
	Offset Centerline, feet	16 Left	10 Left	450 ft Left	60 ft Right	10 Left	Centerline	Centerline	18 ft Right	450 ft Left	60 ft Right
	Station, feet	38+96 Line "S-2-A"	244+32 Line "D"	1589+00 Line "A"	1589+60 Line "A"	244+32 Line "D"	7+00 Ramp B	3+50 Ramp A	8+85 Ramp C	1589+00 Line "A"	1528+00 Line "A"
	Boring No.	TB-3	TB-4	TL-21	TB-10	TB-4	RB-49	RB-57	TB-14	TL-21	RB-6
	Laboratory No.	1	2	3	t	Ç	9	7	o o	6	10

SUMMARY OF SPECIAL LABORATORY TEST RESULTS

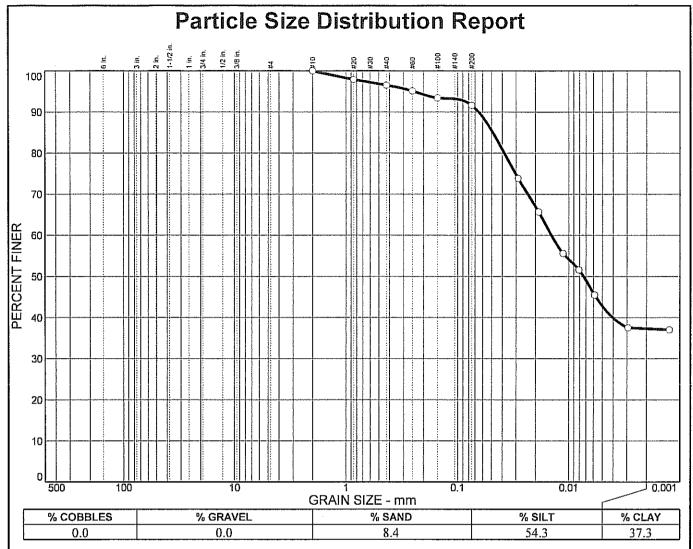
Proposed Interstate 69 Design/Build Project

Interstate 64 to State Road 68
Gibson and Warrick Counties, Indiana
INDOT Project No. IM-069-0 (004)
INDOT Des. No. 0500436
ATC Project No. 86.00481.0181

:				Blow	Natural	Undrained			Atte	rberg I	_imts
Boring Number	Laboratory Number	Sample Number	Depth, ft	count,	Moisture Content, %	Shear Strength, lbs./sq.ft	Dry Density, lbs./cu.ft	pН	LL	PL	PI
RB-1	1	1	1.0 - 3.5	7	17.3						
RB-2	7	3	6.0 - 7.5	7	19.9	2510	106.6				
	7	7	8.5 - 1.0	18	22.8						
RB-5	2	2	3,5 - 5.0	13	21.3						
	2	4	8.5 - 10.0	10	21.8						
RB-6	2	1	1.0 - 2.5	6	25.3					·	
	2	2	3.5 - 5.0	8	26.7						
	10	Bag	1.0 - 5.0						33	19	14
RB-9	2	1	1.0 - 2.5	8	27.9						
	2	3	6.0 - 7.5	8	22.3						
RB-12	7	1	1.0 - 2.5	3	22.6						
	7	2	3.5 - 5.0	5	23.5						
	2	3	6.0 - 7.5	11	20.1	2520	107.3				
	1	4	8.5 - 10.0	11	27.9						
RB-13	1	4	8.5 - 10.0	10	23.7	2390	99.8				
RB-14	2	1	1.0 - 2.5	6	25.3						
	2	2	3.5 - 5.0	12	23,1					-	
RB-15	2	1	1.0 - 2.5	7	25.8						
	2	2	3,5 - 5,0	8	21.4				·		
	2	3	6.0 - 7.5	10	20.6						
RB-16	2	1	1.0 ~ 2.5	8	26.6						
	2	3	6.0 - 7.5	11	19.4						

,				Blow	Natural	Undrained			Atte	rherg I	Limts
Boring Number	Laboratory Number	Sample Number	Depth, ft	count,	Moisture Content, %	Shear Strength, lbs./sq.ft	Dry Density, lbs./cu.ft	pН	LL	PL	PI
RB-16	1	5	13.5 - 15.0	5	30.7		·	-			
RB-17	2	2	3.5 - 5.0	13	23.2						
	2	4	8.5 - 10.0	13	21.0						
	2	5	13.5 - 15.0	9	24.0						
	5	6	18.5 - 20.0	3	27.9						
RB-18	1	1	1.0 - 2.5	3	25.2						
	2	2	3.5 - 5.0	10	20.4						·
	9	3	6,0 - 7.5	10	21.1						
RB-19	7	1	1.0 - 2.5	2	23.5						
	7	2	3,5 ~ 5.0	7	21.1	1190	103.2				
	2	3	6.0 - 7.5	7	21.9						
	2	4	8.5 - 10.0	9	24.6	1410	102.9				
RB-20	2	2	3.5 - 5.0	8	24.0						
	2	3	6.0 - 7.5	10	13,6	1050	111.9				
	2	4	8.5 - 10.0	8	22.7	1550	104.4				
RB-21	2	3	6.0 - 7.5	14	21.4	1540	102.6				******
	3	5	13.5 - 15.0	5	33.7						
	3	6	18.5 - 20.0	5	25.4						
RB-22	1	1	1.0 - 2.5	7	21.3						
	1	3	6.0 - 7.5	10	21.8						
	1	5	13.5 - 15.0	7	22.5	·					
RB-23	1	1	1.0 - 2.5	10	22.5						
	1	3	6.0 - 7.5	9	20.1						
	1	5	13.5 - 15.0	10	16.1						
RB-24	2	1	1.0 - 2.5	10	25.8						-
	2	2	3.5 - 5.0	11	22.0	1260	102.3				

				Blow	Natural	Undrained			Atte	rberg I	imts
Boring Number	Laboratory Number	Sample Number	Depth, ft	count,	Moisture Content, %	Shear Strength, lbs./sq.ft	Dry Density, lbs./cu.ft	pН	LL	PL	PI
RB-24	2	3	6.0 - 7.5	11	23.1	1030	98.3				
	4	5	13.5 - 15.0	10	23.6						
RB-25	1	3	6.0 - 7.5	11	20.7	1930	107.7				
RB-26	1	1	1.0 - 2.5	7	26.4	1730	94.4				
RB-27	1	1	1,0 - 2.5	6	19.6						
n = \$1 1001	1	2	3.5 - 5.0	8	23.1	1480	103.6				
	1	3	6.0 - 7.5	7	22.1						
RB-28	1	2	3.5 - 5.0	11	23.6	1340	96.9				
	1	2	6.0 - 7.5	12	32.8	1240	90,5				
RB-29	I	1	1.0 - 2.5	4	26.2						
	2	2	3.5 - 5.0	7	23.0						
	2	4	8.5 - 10.0	8	22.2					***	
RB-30	7	1	1.0 - 2.5	4	24.1						
	2	3	6,0 - 7.5	9	22.0	2220	102.3				
RB-31	2	1	1.0 - 2.5	8	20.7						
	1	2	3.5 - 5.0	8	20.7						
RB-32	2	1	1.0 - 2.5	19	16.4		-				
	1	2	3.5 - 5.0	11	21.3						
	2	3	6.0 - 7.5	8	19.5						
RB-33	2	2	3.5 - 5.0	6	26.3		-				
	2	4	8.5 - 10.0	10	22						
	1	5	13.5 - 15.0	12	20						
RB-36	2	1	1.0 - 2.5	4	31.3						
	2	2	3.5 - 5.0	8	26.2						
RB-37	. 2	1	1.0 - 2.5	9	27.7		:				
	2	3	6.0 - 7.5	15	20						


		4.4. BOSTONIA		Blow	Natural	Undrained			Atte	rberg I	_imts
Boring Number	Laboratory Number	Sample Number	Depth, ft	count,	Moisture Content, %	Shear Strength, lbs./sq.ft	Dry Density, lbs./cu.ft	pН	LL	PL	ΡI
RB-41	2	1	1.0 - 2.5	7	23.4						
	2	2	3,5 - 5,0	10	22.3						
RB-43	1	1	1.0 - 2.5	2	26.3						
	2	2	3.5 - 5.0	4	23.7						
	2	3	6.0 - 7.5	9	19.1						
	1	4	8.5 - 10.0	3	32.4						
RB-45	2	2	3.5 - 5.0	11	25.9						
RB-46	2	1	1.0 - 2.5	1	29						
	2	2	3.5 - 5.0	3	29.6						
	2	3	6.0 - 7.5	12	18.7						
RB-49	2	1	1.0 - 2.5	7	27.6						
	2	2	3,5 - 5.0	7	24.9						
	2	4	8.5 - 10.0	10	24						
	6	5	13.5 - 15.0	11				7.3	27	22	5
	5	6	18.5 - 20.0	5	29.5						
	5	7	23.5 - 25.0	3	36,2						
RB-50	2	1	1.0 - 2.5	9	22.3						
	2	3	6.0 - 7.5	11	18.2						
	5	6	18.5 - 20.0	5	29.3						
RB-51	2	1	1.0 - 2.5	3	28.5						
	2	2	3.5 - 5.0	6	20,6						
	2	4	8.5 - 10.0	8	22.7						
RB-52	7	1	1.0 - 2.5	4	21.7						
	1	2	3.5 - 5.0	7	24.6	1000	98.8				
RB-53	2	1	1.0 - 2.5	10	26.8						
	2	3	6.0 - 7.5	11	19.3						

				Blow	Natural	Undrained			Atte	rberg I	_imts
Boring Number	Laboratory Number	Sample Number	Depth, ft	count,	Moisture Content, %	Shear Strength, lbs./sq.ft	Dry Density, lbs./cu.ft	pН	LL	PL	PI
RB-53	1	5	13.5 - 15.0	7	29.4						
RB-54	7	1	1.0 - 2.5	3	23.6						
	7	2	3,5 - 5.0	3	25.3			••			
	1	3	6.0 - 7.5	7	20.3						
	1	4	8.5 - 10.0	7	27.5						
RB-55	2	2	3.5 - 5.0	10	18.2						
	1	4	8.5 - 10.0	12	20.1						
	2	5	13.5 - 15.0	10	20.1						
RB-56	2	2	3.5 - 5.0	8	35.6						
	2	4	8.5 - 10.0	8	21.4						
	2	5	13.5 - 15.0	6	29.1						
	1	6	18.5 - 20.0	4	36.9						
	5	7	23.5 - 25.0	1	53,9					:	
RB-57	7	1	1.0 - 2.5	1	27.5			6.2	27	23	4
	1	4	8.5 - 10.0	7	22.5	1860	102.3				
RB-58	7	1	1.0 - 2.5	3	25,5						••••
	7	2	3.5 - 5.0	3	26.7						
	1	3	6.0 - 7.5	6	24.7		, , , , , , , , , , , , , , , , , , , ,				
	1	4	8.5 - 10.0	7	22.5						
	5	6	18.5 - 20.0	3	52.9						
RB-59	7	1	1.0 - 2.5	2	26.0	750	96.5				
	2	2	3.5 - 5.0	7	23.0	1570	102.2				
	1	3	6.0 - 7.5	8	20,9	1280	105.5				
	1	4	8.5 - 10.0	10	20.0	3530	108.9				
RB-60	7	1	1.0 - 2.5	2	26.7						
	2	2	3.5 - 5.0	11	28.6						

				Blow	Natural	Undrained			Atte	rberg I	Limts
Boring Number	Laboratory Number	Sample Number	Depth, ft	count,	Moisture Content, %	Shear Strength, lbs./sq.ft	Dry Density, lbs./cu.ft	pН	LL	PL	PI
RB-60	1	3	6.0 - 7.5	7	24.2						
RB-61	2	1	1.0 - 2.5	7	24.2						
	2	3	6.0 - 7.5	10	19.4						
	1	4	8.5 - 10.0	11	21.1						
TB-1	2	1	1.0 - 2.5	9	25.4	1830	95.7				
	2	2	3.5 - 5.0	9	27.1						
	2	4	8,5 - 10,0	10	21.9						
TB-2	2	2	3.5 - 5.0	8	26.0						
	2	3	6.0 - 7.5	6	23.3	3280	103.5				
	1	4	8.5 - 10.0	11	22.0						
TB-3	2	1	1.0 - 2.5	10	29.0						
	2	2	3.5 - 5.0	9	21.2						
	2	3	6.0 - 7.5	7	28.6						
	1	4	8.5 - 10.0	12	22.5			7.6	42	20	22
	2	5	13.5 - 15.0	7	23.1						
TB-3-T	2	Tube	5.0 - 7.0		20.2	1330	110.0		33	17	16
	2	Tube	12.0 - 14.0		22.1	1070	104.6				
TB-4	2	2	3.5 - 5.0	7	26.1				35	20	15
	2	4	8.5 - 10.0	9	22.1						
	2	5	13.5 - 15.0	7	35.7			7.4			
	· 5	6	18.5 - 20.0	6	25.0						
	5	7	23.5 - 25.0	5	33.2						
	5	8	28.5 - 30.0	5	47.9			8.1	59	24	35
	5	9	33.5 - 35.0	7	46.0	780	73.6				
TB-5	Visual	2	3.5 - 5.0	9	11.9						
TB-5	Visual	4	8.5 - 10.0	7	17.7	5					

				Blow	Natural	Undrained		.,,,,,	Atte	rberg I	Limts
Boring Number	Laboratory Number	Sample Number	Depth, ft	count,	Moisture Content, %	Shear Strength, lbs./sq.ft	Dry Density, lbs./cu.ft	pН	LL	PL	PI
	2	5	13.5 - 15.0	- 6	23.6						
	5	6	18.5 - 20.0	5	23.6						
TB-6	1	1	1.0 - 2.5	6	6.0						
	2	3	6.0 - 7.5	5	5.0						
	1	5	13.5 - 15.0	9	9.0						
TB-7	1	2	3.5 - 5.0	7	28.0						
	2	3	6.0 - 7.5	2	28.5						
	I	4	8.5 - 10.0	9	24.3						
	1	5	13.5 - 15.0	11	21.1						
TB-8	7	1	1.0 - 2.5	3	25.9						
	1	3	6.0 - 7.5	7	23.1	1130	100.5				
TB-9	2	1	1.0 - 2.5	4	25.1						
	2	2	3.5 - 5.0	3	23.0						
	2	3	6.0 - 7.5	6	20.9						-
TB-10	6	1	1.0 - 2.5	13	25.3	1210	95.2				
	5	5	13.5 - 15.0	4	22.6			6.9	50	20	30
TB-11	2	1	1.0 - 2.5	2	26.5						
	2	2	3,5 - 5.0	5	24.9						
	3	3	6.0 - 7.5	3	24.5						
	1	4	8.5 - 10.0	10	24.3						
	4	5	13.5 - 15.0	8	27.1						
TB-11-T	Tube	3	6.0 - 8.0	****	26.1	720	98.0				
		4	12.0 - 14.0		27.3	580	97.3				
TB-12	7	1	1.0 - 2.5	2	23.8						
	2	3	6.0 - 7.5	9	18.3						
TB-13	7	1	1.0 - 2.5	2	31.3						

			William Willia	Blow	Natural	Undrained			Atte	rberg I	Limts
Boring Number	Laboratory Number	Sample Number	Depth, ft	count,	Moisture Content, %	Shear Strength, lbs./sq.ft	Dry Density, Ibs./cu.ft	pН	LL	PL	PI
TB-13	7	2	3,5 - 5.0	3	24.7						
	7	3	6.0 - 7.5	4	25,4						
	2	4	8.5 - 10.0	8	22.0						
TB-14	8	5	13.5 - 15.0	4	28.5			7.0	35	23	12
TL-16	2	1	1.0 - 2.5	7	24.9						
	2	3	6.0 - 7.5	17	18.0						
TL-17	2	1	1.0 - 2.5	6	24.3			·			
	2	2	3.5 - 5.0	12	15.9						
TL-18	2	2	3.5 - 5.0	8	22.3	1410	102.8				
TL-19	2	1	1.0 - 2.5	10	24.0	1440	100.5				
TL-21	9	2	3,5 - 5.0	13	18.9			5.7	26	20	6
	3	3	6.0 - 7.5	12	21.1	2520	104.1	6.4	38	20	18
	3	4	8.5 - 10.0	10	26.4						
	6	5	13.5 - 15.0	2	28.2	,					
	5	· 6	18.5 - 20.0	7	20.9						
	5	7	23.5 - 25.0	2	31.3						
	5	8	28.5 - 30.0	2	43.9						
	5	9	33,5 - 35.0	21	27.6						
TL-22	2	3	6.0 - 7.5	12	18,5	2590	100.7				
	2	4	8.5 - 10.0	11	21,1	2370	107.0				

SiEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10 #20 #40 #60 #100 #200	100.0 97.9 96.5 95.1 93.4 91.6		

	Soil Description			
Silty Clay Lab No. I				
PL= 20	Atterberg Limits LL= 42	PI= 22		
D ₈₅ = 0.0488 D ₃₀ = C _u =	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{60} = 0.0144 \\ \text{D}_{15} = \\ \text{C}_{\text{C}} = \end{array}$	D ₅₀ = 0.0074 D ₁₀ =		
USCS= Classification AASHTO= A-7-6(21)				
<u>Remarks</u>				

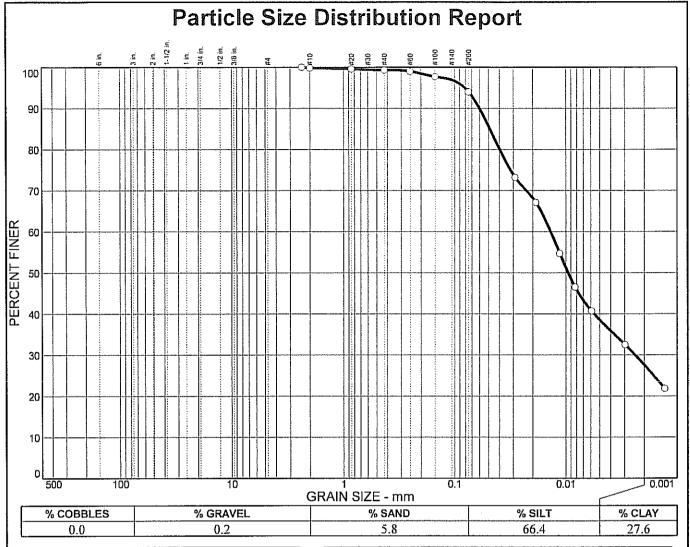
(no specification provided)

Sample No.: TB-3; SS-4

Location:

Source of Sample: 11149

Date:


Elev./Depth: 8.5'-10.0'

ATC ASSOCIATES, INC.

Client: American Structurepoint

Project: 1-69

Project No: 00481.0181

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#8 #10 #20 #40 #60 #100 #200	100.0 99.8 99.6 99.3 99.0 97.7 94.0		
*	<u> </u>	I	

	Soil Description			
Silty Clay Loam Lab No. 2				
	Atterberg Limits			
PL= 20	LL= 35	PI= 15		
D ₈₅ = 0.0488 D ₃₀ = 0.0024 C _u =	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{60} = 0.0138 \\ \text{D}_{15} = \\ \text{C}_{\text{c}} = \end{array}$	D ₅₀ = 0.0096 D ₁₀ =		
USCS=	Classification AASHTO= A-6(14)			
<u>Remarks</u>				

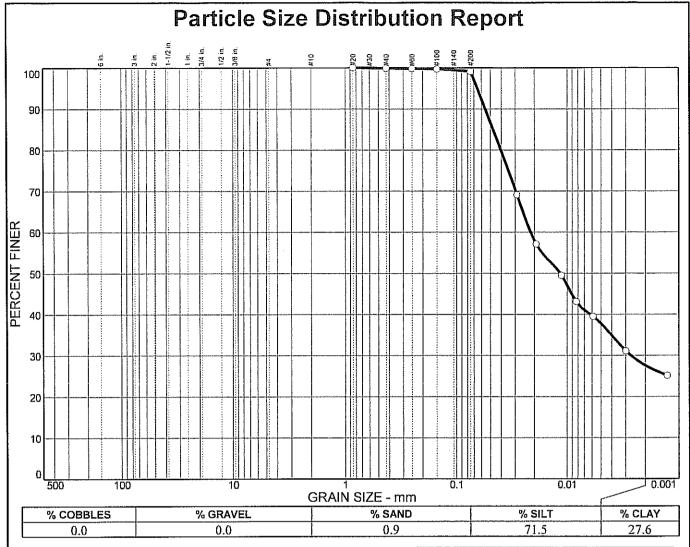
* (no specification provided)

Sample No.: TB-4; SS-5

Location:

Source of Sample: 11148

Date:


Elev./Depth: 13.5'-15.0'

ATC ASSOCIATES, INC.

Client: American Structurepoint

Project: I-69

Project No: 00481.0181

		r ·	
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#20 #40 #60 #100 #200	100.0 99.9 99.8 99.7 99.1		

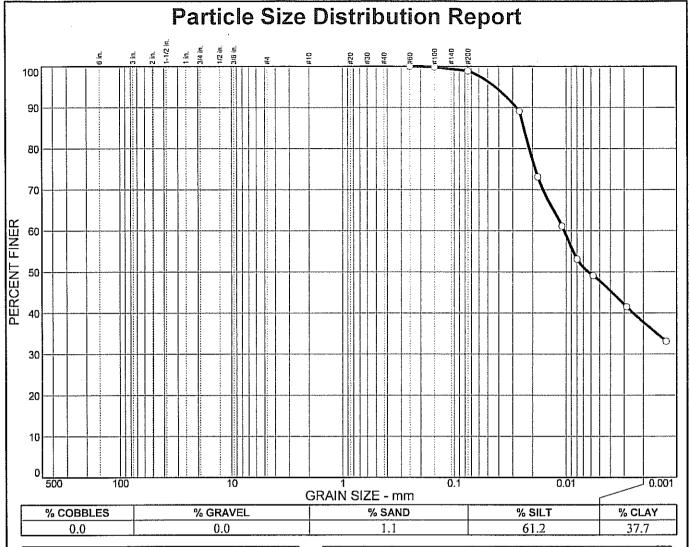
	Soil Description	
Silty Clay Loam Lab No. 3		
PL= 20	Atterberg Limits	PI= 18
D ₈₅ = 0.0474 D ₃₀ = 0.0027 C _u =	Coefficients D60= 0.0217 D15= Cc=	D ₅₀ = 0.0116 D ₁₀ =
USCS=	Classification AASH1	TO= A-6(19)
	Remarks	

ATC ASSOCIATES, INC.

Sample No.: TL-21; SS-3 Location:

Source of Sample: 11213

Date:


Elev./Depth: 6.0'-7.5'

Client: American Structurepoint

Project: I-69

Project No: 00481.0181

11213 Page

		-	
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#60 #100 #200	100.0 99.8 98.9		

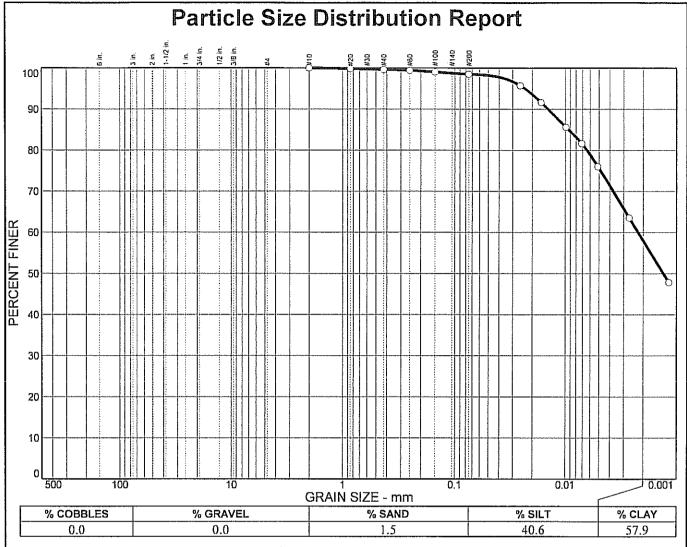
	Soil Description	
Silty Clay Lab No. 4		
PL= 20	Atterberg Limits	Pi= 30
D ₈₅ = 0.0240 D ₃₀ = C _u =	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}60= 0.0105 \\ \text{D}15= \\ \text{C}_{\text{C}}= \end{array}$	D ₅₀ = 0.0063 D ₁₀ =
USCS=	Classification AASHT	TO= A-7-6(33)
	<u>Remarks</u>	

Sample No.: TB-10; SS-5 Location:

Source of Sample: 11213

Date:

Elev./Depth: 13.5'-15.0'


ATC ASSOCIATES, INC.

Client: American Structurepoint

Project: I-69

Project No: 00481.0181

Page 11213

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10 #20 #40 #60 #100 #200	100.0 99.8 99.6 99.4 99.0 98.5		

	0.10	
Clay Lab No. 5	Soil Description	<u>1</u>
PL= 24	Atterberg Limits	<u>s</u> PI= 35
D ₈₅ = 0.0094 D ₃₀ = C _u =	<u>Coefficients</u> D ₆₀ = 0.0022 D ₁₅ = C _c =	D ₅₀ = 0.0013 D ₁₀ =
USCS=	Classification AASH	TO= A-7-6(39)
	<u>Remarks</u>	

Sample No.: TB-4; SS-8

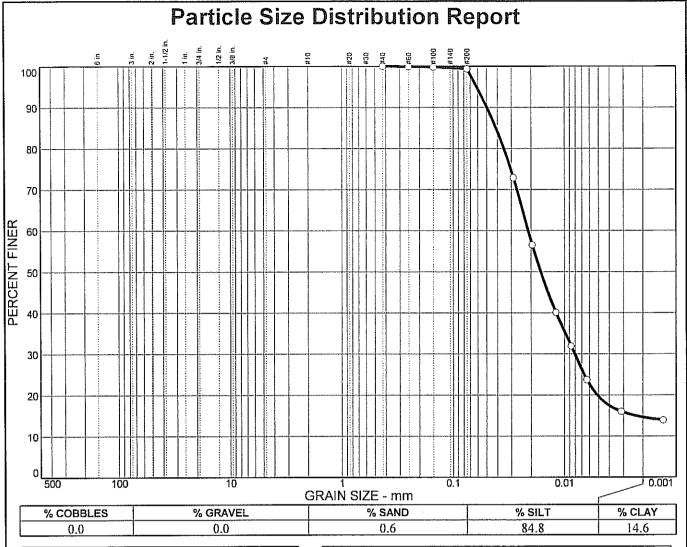
Location:

Source of Sample: 11148

Date:

Elev./Depth: 28.5'-30.0'

ATC ASSOCIATES, INC.


Client: American Structurepoint

Project: I-69

Project No: 00481.0181

Page

11148

SIZE FINER PERCENT (X=NO) #40 100.0 #60 99.9 #100 99.8 #200 99.4	SIEVE	PERCENT	SPEC.*	PASS?
#60 99.9 #100 99.8	SIZE	FINER	PERCENT	(X=NO)
	#60 #100	99.9 99.8		

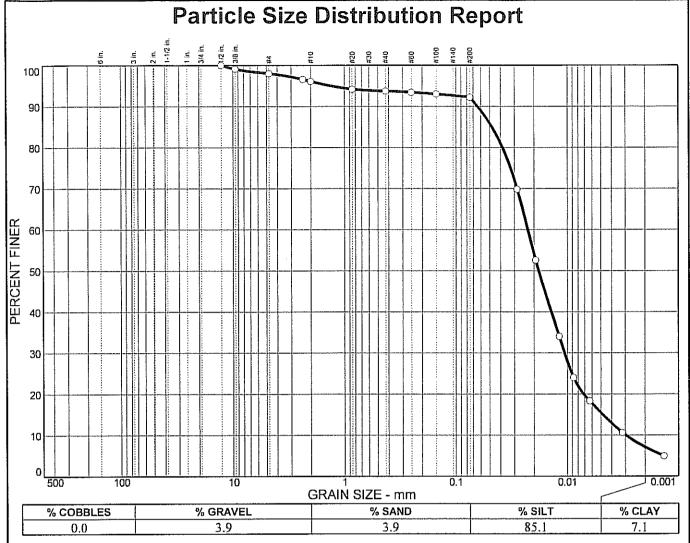
	Soil Description	
Silt Lab No. 6		
PL= 22	Atterberg Limits LL= 27	Pl= 5
D ₈₅ = 0.0414 D ₃₀ = 0.0081 C _u =	Coefficients D60= 0.0213 D15= 0.0024 Cc=	D ₅₀ = 0.0164 D ₁₀ =
USCS=	<u>Classification</u> AASHT	O= A-4(4)
	<u>Remarks</u>	
	· · · · · · · · · · · · · · · · · · ·	

Sample No.: RB-49; SS-5 Location:

ATC ASSOCIATES, INC.

Source of Sample: 11150

Date:


Elev./Depth: 13.5'-15.0'

Client: American Structurepoint

Project: 1-69

Project No: 00481.0181

Page 11150

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.5 in. .375 in. #4 #8 #10 #20 #40 #60 #100 #200	100.0 99.1 98.0 96.6 96.1 94.2 93.7 93.4 93.0 92.2		

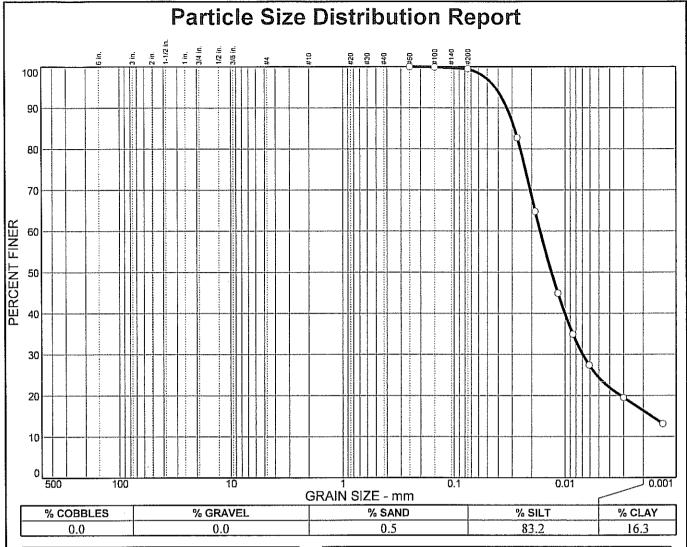
	Soil Description	
Silt Lab No. 7		
PL= 23	Atterberg Limits LL= 27	PI= 4
D ₈₅ = 0.0479 D ₃₀ = 0.0106 C _u = 7.66	Coefficients $D_{60} = 0.0228$ $D_{15} = 0.0048$ $C_{c} = 1.67$	D ₅₀ = 0.0182 D ₁₀ = 0.0030
USCS=	Classification AASHT	O= A-4(3)
	Remarks	

Sample No.: RB-57; SS-1

Source of Sample: 11213

Date:

Elev./Depth: 1.0'-2.5'


Location:

Client: American Structurepoint

Project: 1-69

Project No: 00481.0181

Page 11213

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#60 #100 #200	100.0 99.9 99.5		
* ,			

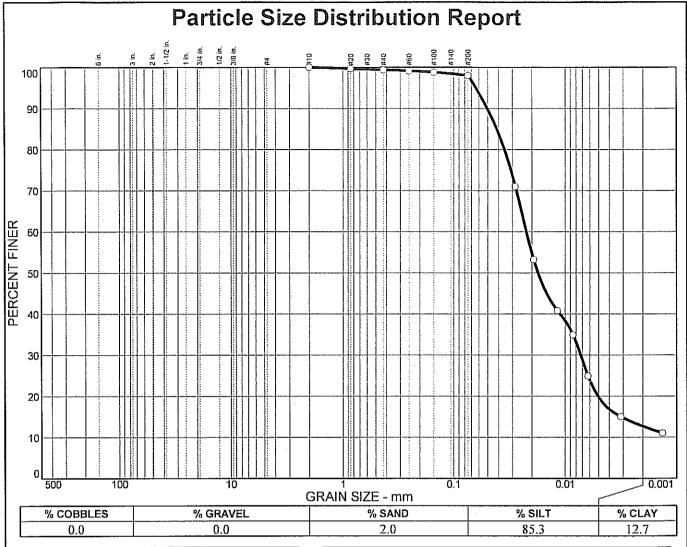
Soil Description	
	•
Atterberg Limits LL= 35	Pl= 12
Coefficients D60= 0.0168 D15= 0.0017 Cc=	D ₅₀ = 0.0133 D ₁₀ =
Classification AASHT	O= A-6(13)
Remarks	
	Atterberg Limits LL= 35 Coefficients D60= 0.0168 D15= 0.0017 Cc= Classification AASHT

Sample No.: TB-14; SS-5 Location:

Source of Sample: 11213

Date:

Elev./Depth: 13.5'-15.0'


ATC ASSOCIATES, INC.

Client: American Structurepoint

Project: I-69

Project No: 00481.0181

11213 Page

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10 #20 #40 #60 #100 #200	100.0 99.7 99.4 99.1 98.8 98.0		
*			

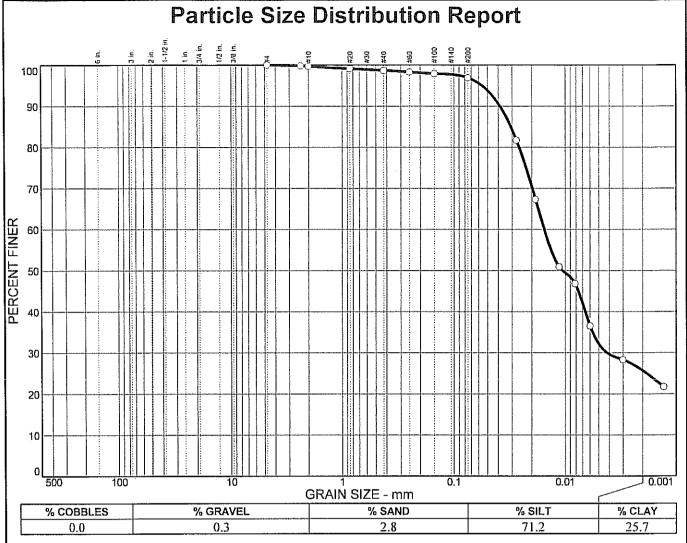
	Soil Description	1
Silt Lab No. 9		
PL= 20	Atterberg Limits	<u>i</u> PI= 6
D ₈₅ = 0.0417 D ₃₀ = 0.0073 C _u =	Coefficients D ₆₀ = 0.0225 D ₁₅ = 0.0031 C _c =	D ₅₀ = 0.0177 D ₁₀ =
USCS=	Classification AASH1	ΓO= A-4(5)
	<u>Remarks</u>	

Sample No.: TL-21; SS-2

Source of Sample: 11213

Date:

Elev./Depth: 3.5'-5.0'


Location:

Client: American Structurepoint

Project: I-69

Project No: 00481.0181

Page 11213

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4 #8 #10 #20 #40 #60 #100 #200	100.0 99.8 99.7 99.1 98.7 98.3 97.9 96.9		
*		L	L.,

Silty Clay Loam Lab No. 10	Soil Description	1
PL= 19	Atterberg Limits	<u>s</u> Pl= 14
D ₈₅ = 0.0309 D ₃₀ = 0.0042 C _u =	Coefficients D ₆₀ = 0.0155 D ₁₅ = C _c =	D ₅₀ = 0.0107 D ₁₀ =
USCS=	Classification AASH	TO= A-6(14)
	Remarks	

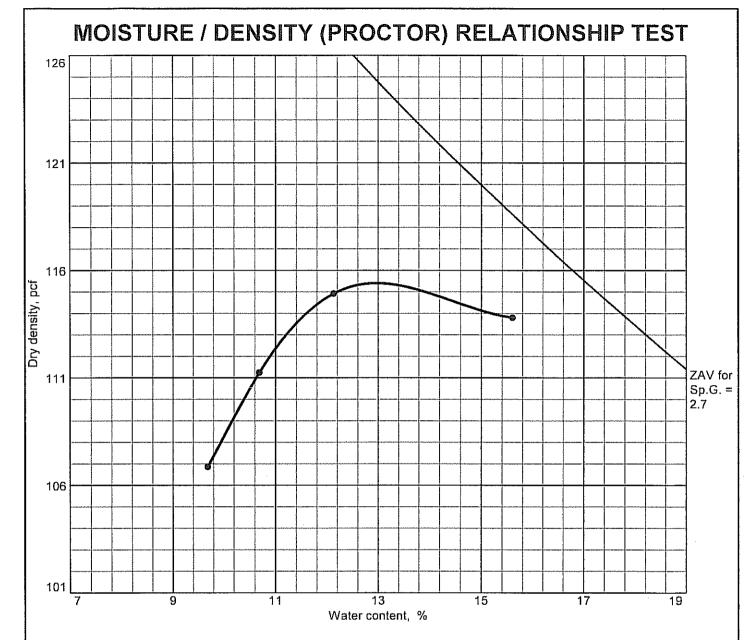
Sample No.: RB-6; Bulk

Location:

Source of Sample: 11253

Date:

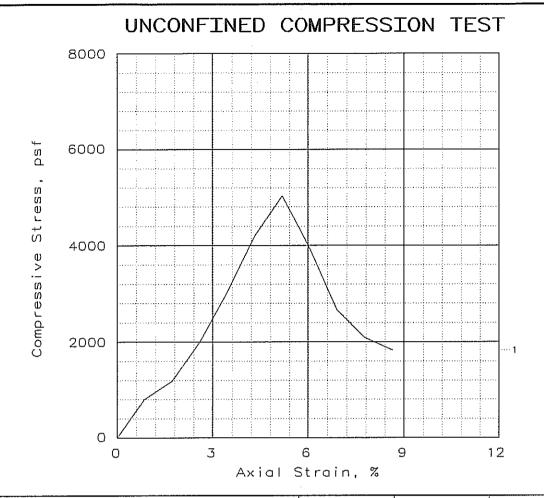
Elev./Depth: 1.0'-5.0'


ATC ASSOCIATES, INC.

Client: American Structurepoint

Project: I-69

Project No: 00481.0181


Page 11253

Test specification: AASHTO T 99 Method A Standard

Elev/	Classif	fication	Nat.	Sp.G.	85.6	85.6	85.6	en G	11	Pl	% >	% <
Depth	USCS	AASHTO	Moist.	3μ.σ.	L L	FI.	No.4	No.200				
1.0'-5.0'		A-6(14)			33	14	0.0	96.9				

TEST RESULTS	MATERIAL DESCRIPTION		
Maximum dry density = 115 pcf	Silty Clay Loam Lab No. 10 / Lab No. 2		
Optimum moisture = 13 %			
Project No. 00481.0181 Client: American Structurepoint	Remarks:		
Project: 1-69			
Date: 03/15/07			
• Source: 11253 Sample No.: RB-6; Bulk Elev./Depth: 1.0'-5.0'			
MOISTURE / DENSITY (PROCTOR) RELATIONSHIP TEST			
ATC ASSOCIATES, INC.	Page 11253		

SAMPLE NO.:	1	
Unconfined strength, psf	5037	
Undrained shear strength, psf	2518	
Failure strain, %	5.2	
Strain rate, %/min	2.00	
Water content, %	19.9	
Wet density, pcf	127.8	
Dry density, pcf	106.6	
Saturation, %	92.4	
Void ratio	0.5811	
Specimen diameter, in	1.41	
Specimen height, in	2.89	
Height/diameter ratio	2.05	

Description:

Bocol (peron)					
	GS= 2.	.7 Type: Split spoo	on		
Project No.: 086.00481.0181	Client: Ameri	Client: American Structurepoint			
Date:					
Remarks:	Project: I-69	9			
	Location: RB-	-2, #3T, 6-7.5'			
	UN	CONFINED COMPRESSION TEST			
Fig. No.:	ATO	C ASSOCIATES INC.			

UNCONFINED COMPRESSION TEST 8000 6000 2000 4000 Axial Strain, %

SAMPLE NO,:	1		
Unconfined strength, psf	5048		
Undrained shear strength, psf	2524		
Failure strain, %	9.1		
Strain rate, %/min	2.00		
Water content, %	20.1		
Wet density, pcf	128.8		
Dry density, pcf	107.3		
Saturation, %	95.0		
Void ratio	0.5710		
Specimen diameter, in	1.34		
Specimen height, in	3.01		
Height/diameter ratio	2.25		
Donneistian		•	

Description:		-		
			GS= 2.7	Type: Split spoon
Project No.: 086.00481.018	Client: American Structurepoint			
Date:				
Remarks:		Project: I-69		
		Locati	on: RB-12, #	3B, 6-7.5'
			UNCONFI	NED COMPRESSION TEST

Fig. No.:

SAMPLE NO.: 1 Unconfined strength, psf 4793 Undrained shear strength, psf 2396 Failure strain, % 4.9 Strain rate, %/min 2.00 Water content, % 23.7 Wet density, pcf 123.4 Dry density, pcf 99.8 Saturation, % 92.8 Void ratio 0.6895 Specimen diameter, in 1.35 Specimen height, in 3.06 Height/diameter ratio 2.26 Description:

Axial Strain, %

GS= 2.7 Type: Split spoon

Project No.: 86.00481.0181

Stress,

Compressive

2000

0

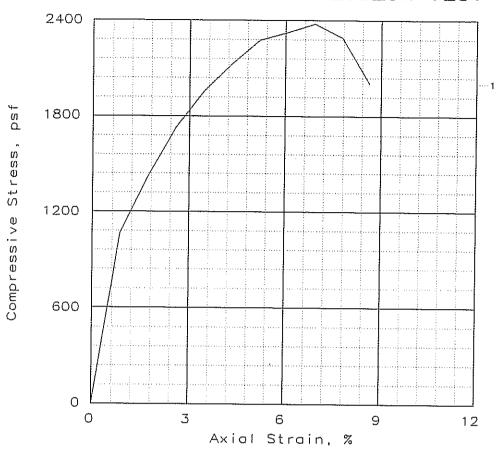
3

Date:

Remarks:

Client: American Structurepoint

Project: I-69


Location: RB-13, #4T, 8.5-10'

UNCONFINED COMPRESSION TEST

12

ATC ASSOCIATES INC.

Fig. No.: ____

SAMPLE NO.:	1	
Unconfined strength, psf	2379	
Undrained shear strength, psf	1190	
Failure strain, %	6.9	
Strain rate, %/min	2.00	
Water content, %	21.1	
Wet density, pcf	124.9	
Dry density, pcf	103.2	
Saturation, %	89.9	
Void ratio	0.6340	
Specimen diameter, in	1.41	
Specimen height, in	2.89	
Height/diameter ratio	2.06	

Description:

GS= 2.7 Type: Split spoon
Client: American Structurepoint

Project No.: 086.00481.0181

Date:

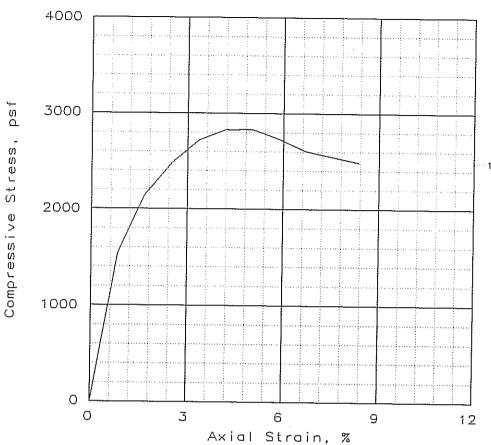

Remarks:

Fig. No.:

Project: I-69

Location: RB-19, #2B, 3.5-5'

UNCONFINED COMPRESSION TEST

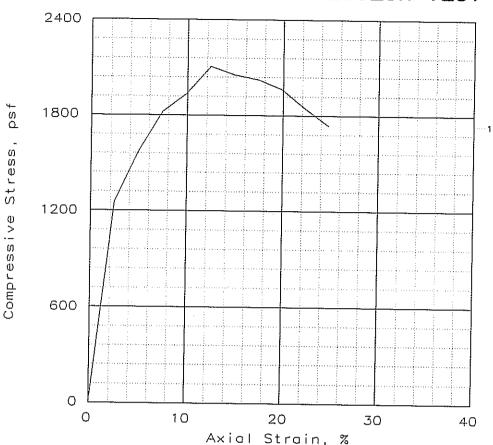
SAMPLE NO.:	1	
Unconfined strength, psf	2831	
Undrained shear strength, psf	1415	
Failure strain, %	5.0	
Strain rate, %/min	2.00	
Water content, %	24.6	
Wet density, pcf	128.2	
Dry density, pcf	102.9	
Saturation, %	101.9	71111
Void ratio	0.6623	
Specimen diameter, in	1.36	
Specimen height, in	2.99	
Height/diameter ratio	2.19	
Description:		1

GS= 2.74 Type: Split spoon

Project No.: 086.00481.0181

Date:

Remarks:


Fig. No.:

Client: American Structurepoint

Project: I-69

Location: RB-19, #4B, 8.5-10°

UNCONFINED COMPRESSION TEST

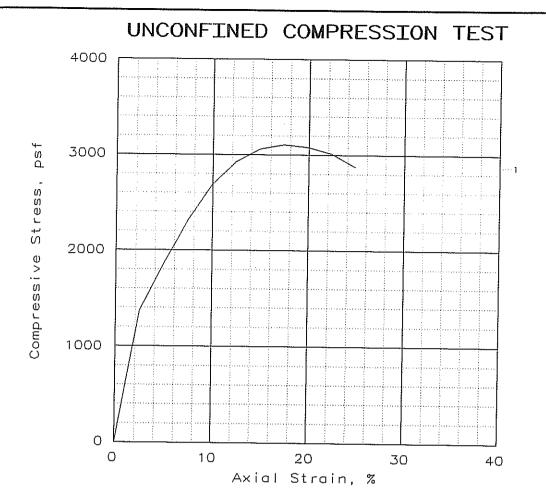
SAMPLE NO.:	1		
Unconfined strength, psf	2105		
Undrained shear strength, psf	1053		
Failure strain, %	12.4		
Strain rate, %/min	2.00		
Water content, %	13.6		<u> </u>
Wet density, pcf	127.1		
Dry density, pcf	111.9		
Saturation, %	72.4		
Void ratio	0.5065		
Specimen diameter, in	1.39		
Specimen height, in	3.03		
Height/diameter ratio	2.17	**************************************	
Description:			

GS= 2.7 Type: Split spoon

Project No.: 086.00481.0181

Date:

Remarks:


Fig. No.:

Client: American Structurepoint

Project: I-69

Location: RB-20, #3B, 6-7.5'

UNCONFINED COMPRESSION TEST

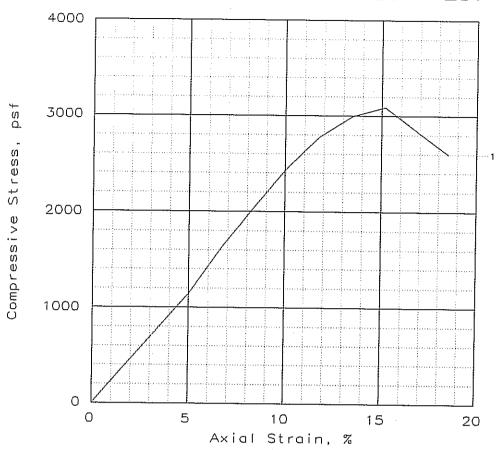
SAMPLE NO.:	1	
Unconfined strength, psf	3106	
Undrained shear strength, psf	1553	
Failure strain, %	17.4	
Strain rate, %/min	2.00	
Water content, %	22.7	
Wet density, pcf	128.1	
Dry density, pcf	104.4	
Saturation, %	99.7	
Void ratio	0.6141	
Specimen diameter, in	1.39	
Specimen height, in	3.02	
Height/diameter ratio	2.18	
Description:		

GS= 2.7 Type: Split spoon

Project No.: 086.00481.0181

Date:

Remarks:


Fig. No.: -

Client: American Structurepoint

Project: I-69

Location: RB-20, #4T, 8.5-10'

UNCONFINED COMPRESSION TEST

SAMPLE NO.:	1	
Unconfined strength, psf	3089	
Undrained shear strength, psf	1544	
Failure strain, %	15.2	
Strain rate, %/min	2.00	
Water content, %	21.4	
Wet density, pcf	124.5	
Dry density, pcf	102.6	
Saturation, %	89.7	
Void ratio	0.6431	
Specimen diameter, in	1.50	
Specimen height, in	2.97	
Height/diameter ratio	1.98	
Description:		

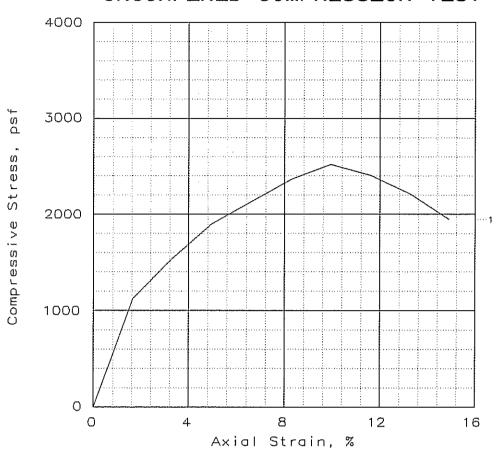
GS= 2.7 Type: Split spoon

Project No.: 086.00481.0181

Date:

Remarks:

Client: American Structurepoint


Project: I-69

Location: RB-21, #3T, 6-7.5'

UNCONFINED COMPRESSION TEST

ATC ASSOCIATES INC.

Fig. No.: ----

SAMPLE NO.:	1	
Unconfined strength, psf	2520	
Undrained shear strength, psf	1260	
Failure strain, %	9.9	
Strain rate, %/min	2.00	
Water content, %	22.0	
Wet density, pcf	124.8	
Dry density, pcf	102.3	
Saturation, %	91.8	
Void ratio	0.6472	
Specimen diameter, in	1.39	
Specimen height, in	3.02	
Height/diameter ratio	2.18	
[

Description:

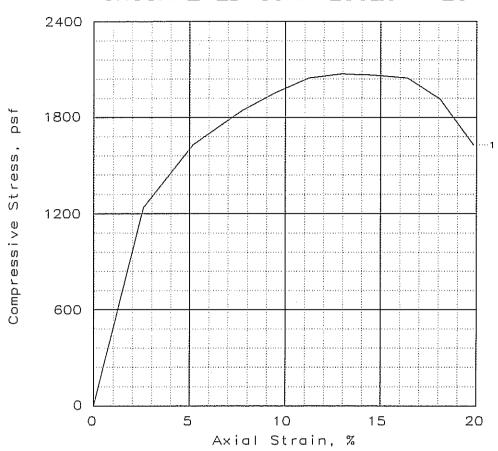
| GS= 2.7 | Type: Split spoon

Project No.: 086,00481.0181

Date:

Remarks:

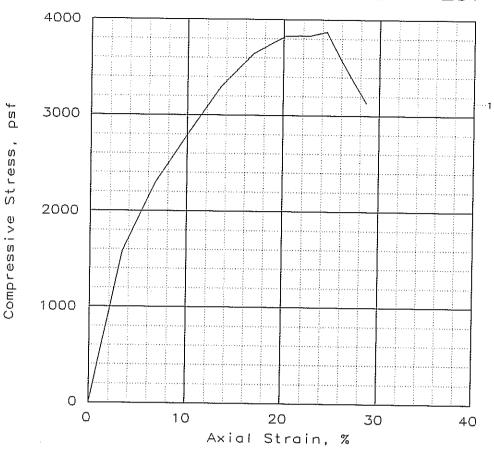
Client: American Structurepoint


Project: I-69

Location: RB-24, #2B, 3.5-5'

UNCONFINED COMPRESSION TEST

ATC ASSOCIATES INC.


Fig. No.: ____

SAMPLE NO.:	1		
Unconfined strength, psf	2073		
Undrained shear strength, psf	1037		, and the second
Failure strain, %	12.9		
Strain rate, %/min	2.00		
Water content, %	23.1		<u> </u>
Wet density, pcf	121.1		
Dry density, pcf	98.3		
Saturation, %	87.4		
Void ratio	0.7142		
Specimen diameter, in	1.39		
Specimen height, in	2.90		
Height/diameter ratio	2.08		

Fig. No.:

Description:			
		GS= 2.7	Type: Split spoon
Project No.: 086.00481.0181	Clier	nt: American St	ructurepoint
Date:			
Remarks:	Proje	Project: I-69	
	Locat	ion: RB-24, #3	Т, 6-7.5'
		UNCONFINE	ED COMPRESSION TEST
Fig. No.:		ATC ASS	SOCIATES INC.

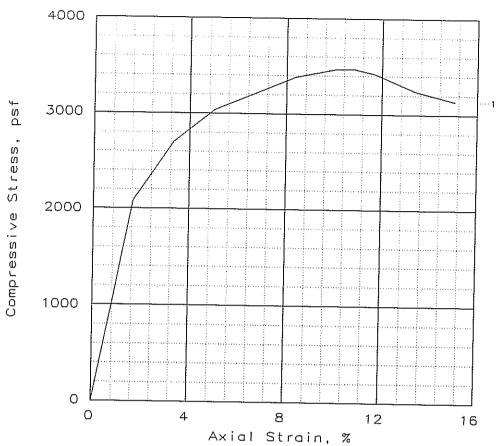
SAMPLE NO.:	1	
Unconfined strength, psf	3873	
Undrained shear strength, psf	1936	
Failure strain, %	24.5	
Strain rate, %/min	2.00	
Water content, %	20.7	
Wet density, pcf	130.0	
Dry density, pcf	107.7	
Saturation, %	99.0	
Void ratio	0.5648	
Specimen diameter, in	1.38	
Specimen height, in	2.96	
Height/diameter ratio	2.15	
Description:	***************************************	——————————————————————————————————————

GS= 2.7 Type: Split spoon

Project No.: 086.00481.0181

Date:

Remarks:


Fig. No.: -

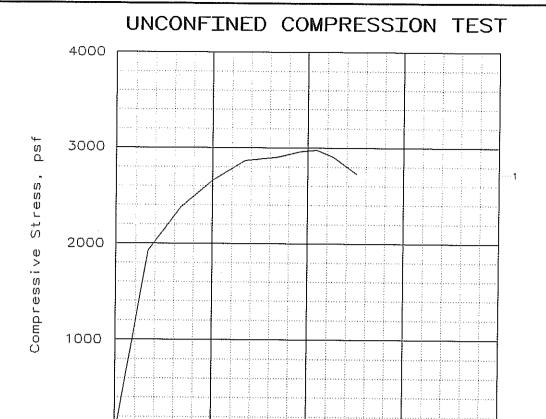
Client: American Structurepoint

Project: I-69

Location: RB-25, #3T, 6-7.5

UNCONFINED COMPRESSION TEST

SAMPLE NO.:	1		
Unconfined strength, psf	3470		
Undrained shear strength, psf	1735		
Failure strain, %	10.9		<u> </u>
Strain rate, %/min	2.00		
Water content, %	26.4		
Wet density, pcf	119.4		
Dry density, pcf	94.4		
Saturation, %	90.9	·	
Void ratio	0.7854		
Specimen diameter, in	1.35		
Specimen height, in	2.99		
Height/diameter ratio	2.21		
Description			


Description:

Location: RB-26, #1T, 1-2.5'

UNCONFINED COMPRESSION TEST

ATC ASSOCIATES INC.

Fig. No.:

SAMPLE NO.:	1	
Unconfined strength, psf	2977	
Undrained shear strength, psf	1489	
Failure strain, %	20.9	
Strain rate, %/min	2.00	
Water content, %	23.1	
Wet density, pcf	127.5	
Dry density, pcf	103.6	
Saturation, %	99.5	
Void ratio	0.6269	
Specimen diameter, in	1.37	
Specimen height, in	2.99	
Height/diameter ratio	2.18	

20

Axial Strain, %

30

40

Description:

GS= 2.7 Type: Split spoon

Project No.: 086.00481.0181

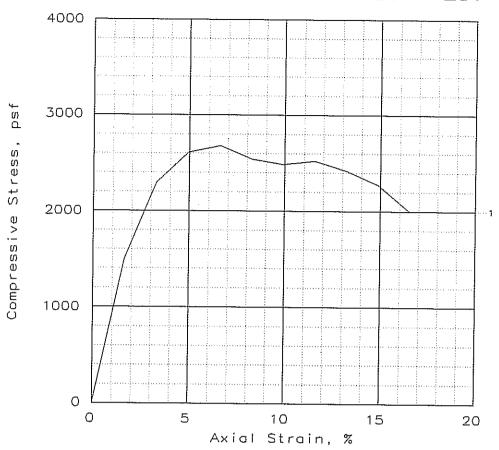
0

10

Date:

Remarks:

Client: American Structurepoint


Project: I-69

Location: RB-27, #2T, 3.5-5'

UNCONFINED COMPRESSION TEST

ATC ASSOCIATES INC.

Fig. No.: ____

1	
2680	
1340	
6.6	
2.00	
23.6	
119.8	
96.9	
86.2	
0.7397	
1.53	
3.03	
1.98	
	1340 6.6 2.00 23.6 119.8 96.9 86.2 0.7397 1.53 3.03

Description:

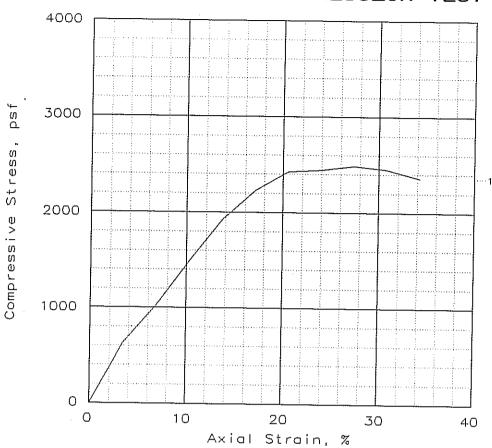
GS= 2.7 Type: Split spoon

Project No.: 086.00481.0181

Date:

Remarks:

Client: American Structurepoint


Project: I-69

Location: RB-28, #2T, 3.5-5'

UNCONFINED COMPRESSION TEST

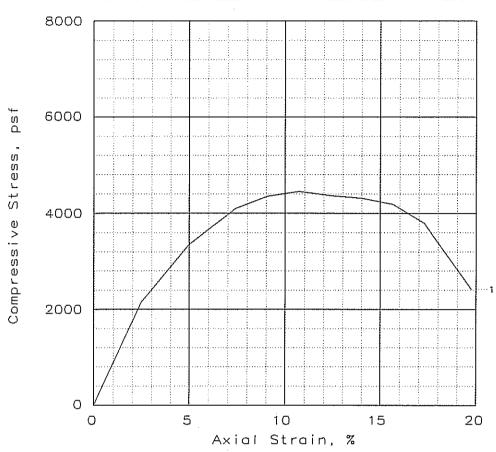
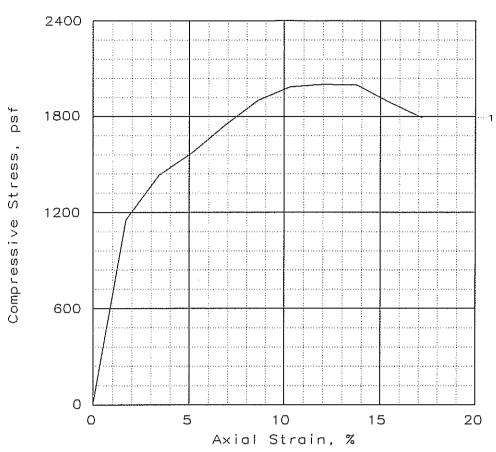

ATC ASSOCIATES INC.

Fig. No.: _____

SAMPLE NO.:	1		<u></u>
Unconfined strength, psf	2486		
Undrained shear strength, psf	1243		
Failure strain, %	27.4		
Strain rate, %/min	2.00		
Water content, %	32,8	1	
Wet density, pcf	120.2	**	
Dry density, pcf	90.5		
Saturation, %	100.5		1404
Void ratio	0.8967		
Specimen diameter, in	1.57		
Specimen height, in	2.92		
Height/diameter ratio	1.86		**
Description:	——————————————————————————————————————		

Description:			
	GS= 2.75	Type: Split spoon	
Project No.: 086.00481.0181	Client: American Str	Client: American Structurepoint	
Date:]	·	
Remarks:	ks: Project: I-69		
	Location: RB-28, #3B	, 6-7.5'	
	UNCONFINED	COMPRESSION TEST	
Fig. No.:	ATC ASS	OCTATES INC	



SAMPLE NO.:	1	
Unconfined strength, psf	4454	
Undrained shear strength, psf	2227	
Failure strain, %	10.7	
Strain rate, %/min	2.00	
Water content, %	22.0	
Wet density, pcf	124.8	
Dry density, pcf	102.3	
Saturation, %	91.6	
Void ratio	0.6479	
Specimen diameter, in	1.41	
Specimen height, in	3.03	
Height/diameter ratio	2.15	

Description:

Fig. No.:

peser (peron.				
	GS= 2.7	Type: Split spoon		
Project No.: 086.00481.0181	Client: American Str	ructurepoint		
Date:				
Remarks:	Project: I-69	Project: I-69		
	Location: RB-30, #3T	-, 6-7.5 ⁻		
	UNCONFINE	D COMPRESSION TEST		
Fig. No.:	ATC ASS	SOCIATES INC.		

SAMPLE NO.:	1		
Unconfined strength, psf	2003		
Undrained shear strength, psf	1001		
Failure strain, %	12.0		
Strain rate, %/min	2.00		
Water content, %	24.6		
Wet density, pcf	123.1		
Dry density, pcf	98.8		
Saturation, %	94.1	·	
Void ratio	0.7056		
Specimen diameter, in	1.33		
Specimen height, in	2.91		
Height/diameter ratio	2.18		

Description:

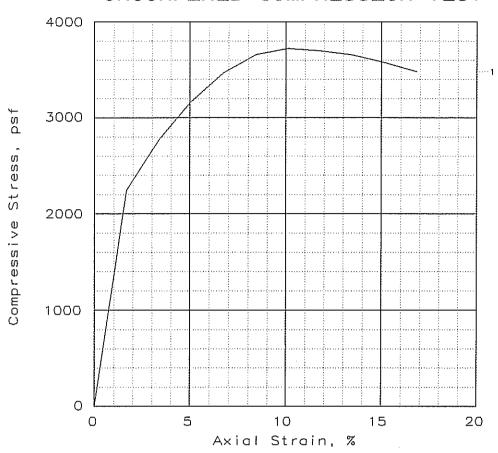
GS= 2.7 Type: Split spoon

Project No.: 086.00481.0181

Date:

Remarks:

Client: American Structurepoint


Project: I-69

Location: RB-52, #2B, 3.5-5'

UNCONFINED COMPRESSION TEST

ATC ASSOCIATES INC.

Fig. No.: ---

SAMPLE NO.:	1		
Unconfined strength, psf	3724		
Undrained shear strength, psf	1862		
Failure strain, %	10.1		
Strain rate, %/min	2.00		
Water content, %	22.5		
Wet density, pcf	125.3		
Dry density, pcf	102.3		
Saturation, %	93.8		
Void ratio	0.6471		
Specimen diameter, in	1.33		
Specimen height, in	2.97		
Height/diameter ratio	2.24		
Description:			

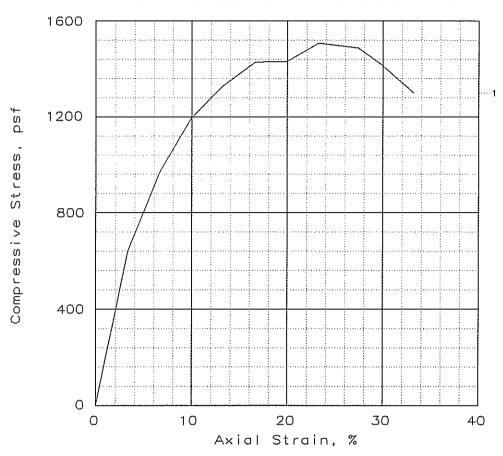
GS= 2.7	Type: Split spoon

Project No.: 086.00481.0181

Date:

Remarks:

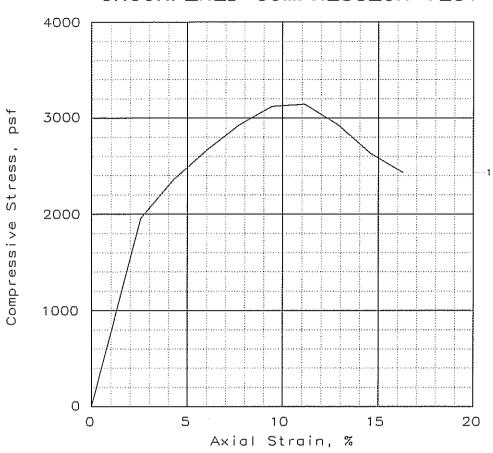
Client: American Structurepoint


Project: I-69

Location: RB-57, #4B, 8.5-10'

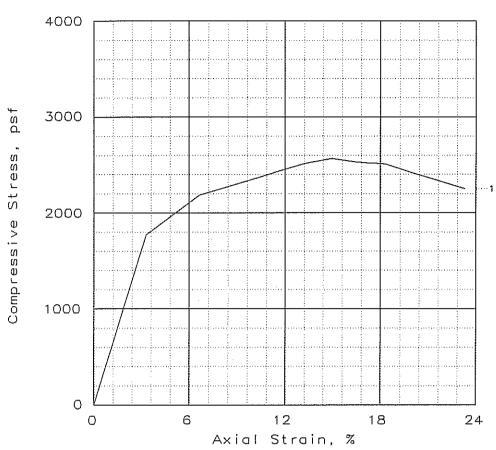
UNCONFINED COMPRESSION TEST

ATC ASSOCIATES INC.


Fig. No.: ----

SAMPLE NO.:	1	
Unconfined strength, psf	1508	
Undrained shear strength, psf	754	
Failure strain, %	23.3	
Strain rate, %/min	2.00	
Water content, %	26.0	
Wet density, pcf	121.7	
Dry density, pcf	96.5	
Saturation, %	94.2	
Void ratio	0.7463	
Specimen diameter, in	1.40	
Specimen height, in	3.01	
Height/diameter ratio	2.15	

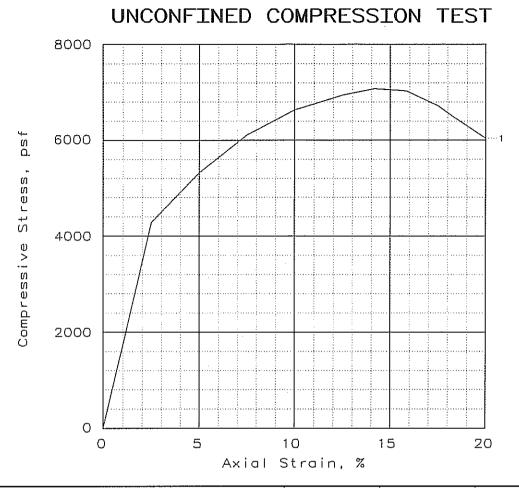
Description:


		GS= 2.7	Type: Split spoon
Project No.: 085.00481.0181	Clien	nt: American St	ructurepoint
Date;			
Remarks:	Proje	ect: I-69	
	Loca	tion: RB-59, #1	3, 1-2.5'
		UNCONFINE	D COMPRESSION TEST
Fig. No.: ——		ATC ASS	SOCIATES INC.

SAMPLE NO.:	1		
Unconfined strength, psf	3143		
Undrained shear strength, psf	1572	- The second sec	
Failure strain, %	11.1		
Strain rate, %/min	2.00		
Water content, %	23.0		
Wet density, pcf	125.7		
Dry density, pcf	102.2		
Saturation, %	95.5		
Void ratio	0.6494		
Specimen diameter, in	1.34		
Specimen height, in	2.92		
Height/diameter ratio	2.17		

Description:

			GS≅ 2./	l	Type: Spilt s	sboon
Project No.: 086.004	31.0181	Client:	American S	Structur	epoint	
Date:						
Remarks:		Project	: I-69			
		Locatio	n: R8–59, #	#2B, 3.5	5-5 '	in A Tanada
			UNCONFI	INED COM	PRESSION TEST	
Fig. No.:			ATC AS	SSOCI	ATES IN	⊃. ∥



SAMPLE NO.:	1		
Unconfined strength, psf	2568		
Undrained shear strength, psf	1284		
Failure strain, %	15.0		
Strain rate, %/min	2.00		
Water content, %	20.9		
Wet density, pcf	127.6		
Dry density, pcf	105.5		
Saturation, %	94.6		
Void ratio	0.5973		
Specimen diameter, in	1.33		
Specimen height, in	3.01		
Height/diameter ratio	2.27		
Description		<u>, </u>	

Description:

Fig. No.:

		GS= 2.7	Type: Split spoon
Project No.: 086.00481.018!	Clien	t: American Str	ructurepoint
Date:			
Remarks:	Proje	ct: I-69	
	Locat	ion: RB-59, #3E	3, 6-7.5'
		UNCONFINE	D COMPRESSION TEST

SAMPLE NO.:	1		
Unconfined strength, psf	7078		
Undrained shear strength, psf	3539		
Failure strain, %	14.2		
Strain rate, %/min	2.00		
Water content, %	20.0		
Wet density, pcf	130.8		
Dry density, pcf	108.9		
Saturation, %	98.8		
Void ratio	0.5471		
Specimen diameter, in	1.33		
Specimen height, in	3.00		
Height/diameter ratio	2.26		
Description:			

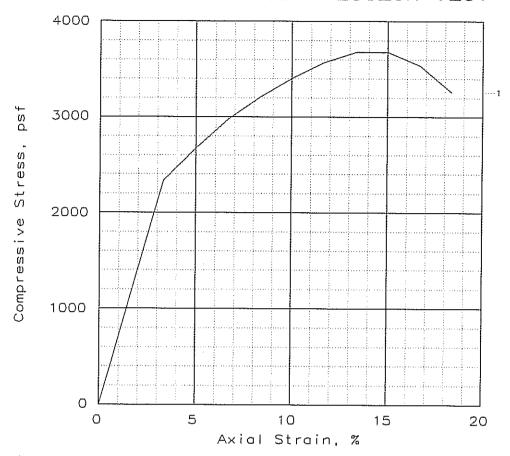
GS= 2.7 Type: Split spoon

Project No.: 086.00481.0181

Date:

Remarks:

Client: American Structurepoint


Project: I-69

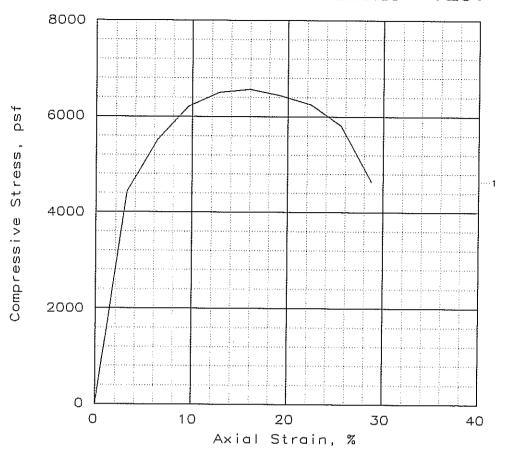
Location: RB-59, #4B, 8.5-10'

UNCONFINED COMPRESSION TEST

ATC ASSOCIATES INC.

Fig. No.: ____

SAMPLE NO.:	1		
Unconfined strength, psf	3678		
Undrained shear strength, psf	1839	****	
Failure strain, %	13.4	***************************************	
Strain rate, %/min	2.00	***	
Water content, %	25.4		
Wet density, pcf	120.0		
Dry density, pcf	95.7		-
Saturation, %	90.0		,
Void ratio	0.7620		
Specimen diameter, in	1.35	" "	
Specimen height, in	2.99	- 1011	
Height/diameter ratio	2.22		
Description:			


	GS= 2.7	Type: Split spoon
Project No.: 086.00481.0181	Client: American Consul	ting, Inc.
Date:		,

Remarks: | Project: I-69

Location: TB-1, $\frac{\mu}{\pi}$ 1, 1-2.5'

UNCONFINED COMPRESSION TEST

Fig. No.: ____ ATC ASSOCIATES INC.

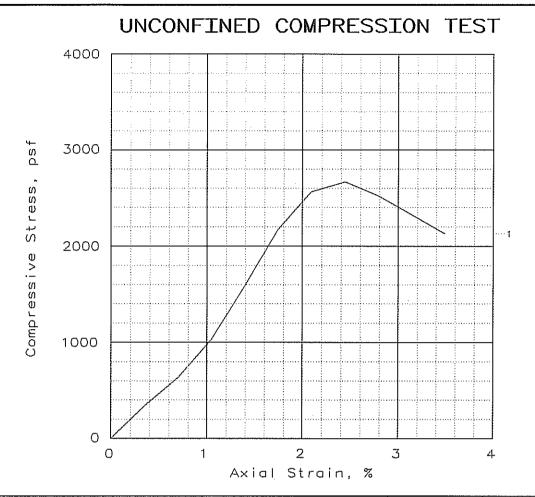
SAMPLE NO.:	1			
Unconfined strength, psf	6570			
Undrained shear strength, psf	3285			
Failure strain, %	16.0			
Strain rate, %/min	2.00			
Water content, %	23.3			
Wet density, pcf	127.6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Dry density, pcf	103.5			
Saturation, %	99.5			
Void ratio	0.6349			
Specimen diameter, in	1.33			
Specimen height, in	3.12			
Height/diameter ratio	2.34			===
Description:			 	

GS = 2.71Type: Split spoon Project No.: 086.00481.0181

Date:

Remarks:

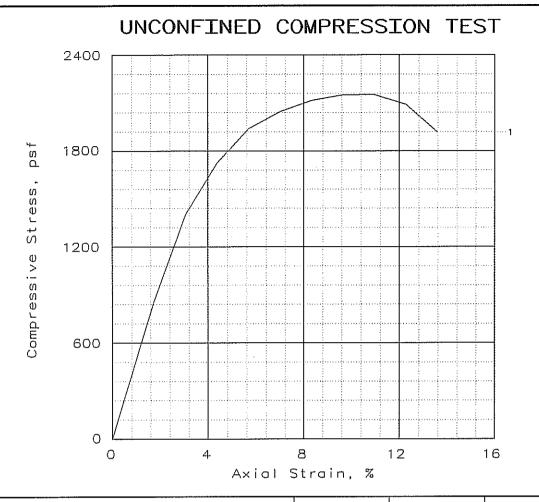
Client: American Consulting, Inc.


Project: I-69

Location: TB-2, #3B, 6-7.5'

UNCONFINED COMPRESSION TEST

ATC ASSOCIATES INC.


Fig. No.:

SAMPLE NO.:	1		
Unconfined strength, psf	2667		
Undrained shear strength, psf	1333		
Failure strain, %	2.4		
Strain rate, %/min	2.00		
Water content, %	20.2		
Wet density, pcf	132.3		
Dry density, pcf	110.0		
Saturation, %	100.0		
Void ratio	0.5545		
Specimen diameter, in	2.86		
Specimen height, in	5.73		
Height/diameter ratio	2.01		
_ · · ·		 	

Description:

		GS= 2.74	Type: Shelby tube		
Project No.: 086,00481.0181	Clie	ent: American Str	ucturepoint		
Date:					
Remarks:		Project: I-69			
	Loca	ntion: TB-3, 5-7'			
		UNCONFINE	D COMPRESSION TEST		
Fig. No :	7000000	ATC ASS	OCTATES INC.		

SAMPLE NO.:	1		
Unconfined strength, psf	2153		
Undrained shear strength, psf	1076		
Failure strain, %	11.0		
Strain rate, %/min	2.00		
Water content, %	22.1		
Wet density, pcf	127.7		
Dry density, pcf	104.6		
Saturation, %	97.6		
Void ratio	0.6109		
Specimen diameter, in	2.85		
Specimen height, in	5.70		
Height/diameter ratio	2.00		
	700000000000000000000000000000000000000	·	

Description:

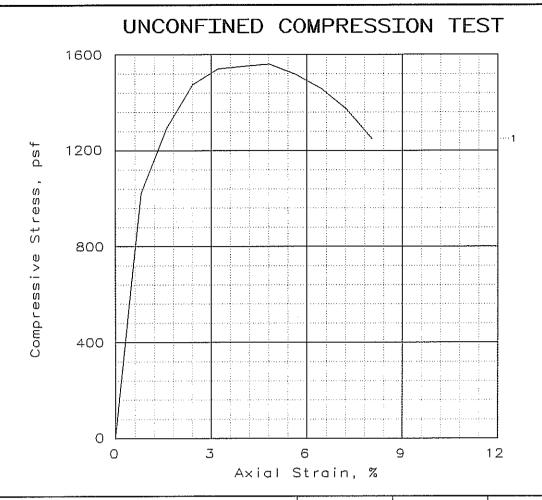
| GS= 2.7 | Type: Shelby tube

Project No.: 85.00481.0181

Date:

Remarks:

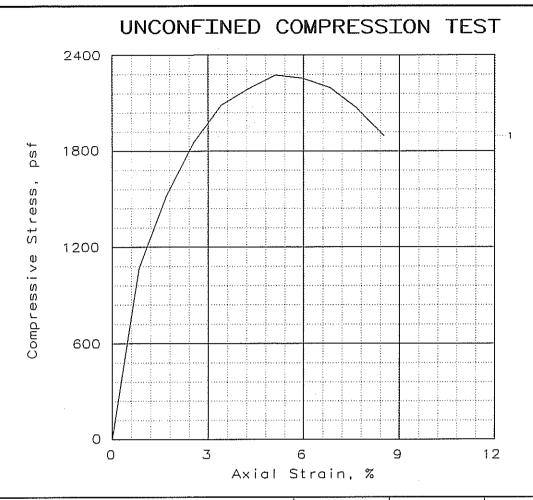
Client: American Structurepoint


Project: I-69

Location: TB-3, 12-14'

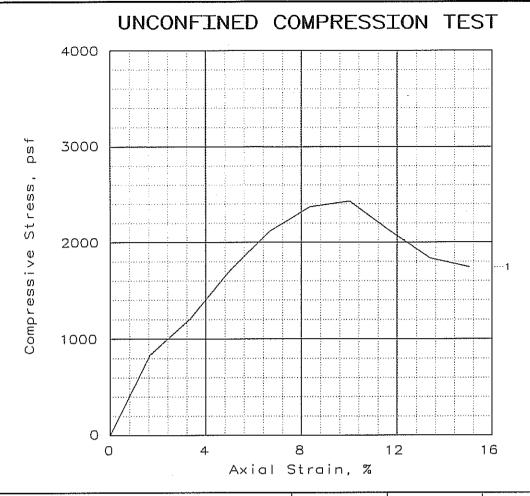
UNCONFINED COMPRESSION TEST

ATC ASSOCIATES INC.


Fig. No.: ----

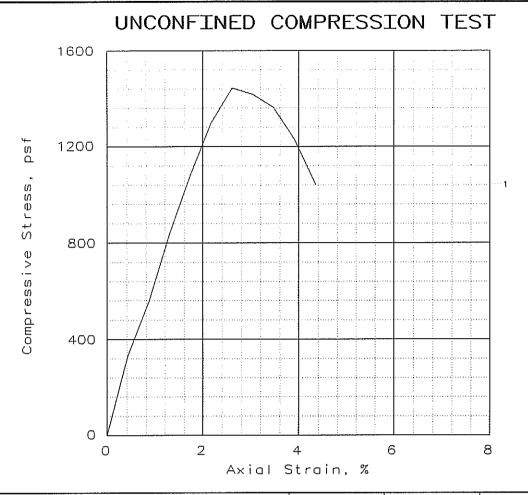
SAMPLE NO.:	1	
Unconfined strength, psf	1561	
Undrained shear strength, psf	781	
Failure strain, %	4.8	
Strain rate, %/min	2.00	
Water content, %	46.0	
Wet density, pcf	107.5	
Dry density, pcf	73.6	
Saturation, %	96.4	
Void ratio	1.2891	
Specimen diameter, in	1.51	
Specimen height, in	3.10	
Height/diameter ratio	2.06	
	• •	

Description:


				GS= 2.7	lype: Split spoo	n	
Project No.: 85.00481.0181			Client: American Consulting, Inc.				
Date:							
Remarks:			Project: I-69				
			Locati	on: TB-4, #9	9B, 33.5-35'		
				UNCONFI	NED COMPRESSION TEST	******	
Fig. No.:				ATC AS	SSOCIATES INC.		

SAMPLE NO.:	1	
Unconfined strength, psf	2275	
Undrained shear strength, psf	1138	
Failure strain, %	5.1	
Strain rate, %/min	2.00	
Water content, %	23.1	
Wet density, pcf	123,7	
Dry density, pcf	100.5	
Saturation, %	92.1	
Void ratio	0.6772	
Specimen diameter, in	1.36	
Specimen height, in	2.93	
Height/diameter ratio	2.15	

Description;	
	GS= 2.7 Type: Split spoon
Project No.: 086.00481.0181	Client: American Structurepoint
Date:	
Remarks:	Project: I-69
	Location: TB-8, #3T, 6-7.5'
	JINCONETNED COMPRESSION TEST


Fig. No.:

SAMPLE NO.:	1	
Unconfined strength, psf	2431	
Undrained shear strength, psf	1216	
Failure strain, %	10.0	
Strain rate, %/min	2.00	
Water content, %	25.3	
Wet density, pcf	119.3	
Dry density, pcf	95.2	
Saturation, %	88.6	
Void ratio	0.7704	
Specimen diameter, in	1.39	
Specimen height, in	2.99	
Height/diameter ratio	2.15	
4		

Description:

			GS= 2.7	Type: Split spoon	
Project No.: 08	6.00481.0181	Clie	nt: American St	ructurepoint	
Date:					
Remarks:		Proj	ect: I-69		
		Loca	tion: TB-10, #1	B, 1-2.5'	
		***************************************	UNCONFIN	ED COMPRESSION TEST	
Fia. No.:		REAL PROPERTY OF THE PROPERTY	ATC ASS	SOCIATES INC.	

SAMPLE NO.:	1	
Unconfined strength, psf	1444	
Undrained shear strength, psf	722	
Failure strain, %	2.6	
Strain rate, %/min	2.00	
Water content, %	26.1	
Wet density, pcf	123.5	
Dry density, pcf	98.0	
Saturation, %	97.7	
Void ratio	0.7201	
Specimen diameter, in	2.86	
Specimen height, in	5.74	
Height/diameter ratio	2.01	

Description:

GS= 2.7 Type: Shelby tube

Project No.: 086.00481.0181

Date:

Remarks:

Client: American Structurepoint

Project: I-69

Location: TB-11, 6-8'

UNCONFINED COMPRESSION TEST

ATC ASSOCIATES INC.

Fig. No.: ____

SAMPLE NO.:	1 1	
Unconfined strength, psf	1166	
Undrained shear strength, psf	583	
Failure strain, %	4.3	
Strain rate, %/min	2.00	
Water content, %	27.3	
Wet density, pcf	123.9	
Dry density, pcf	97.3	
Saturation, %	100.1	
Void ratio	0.7387	
Specimen diameter, in	2.87	
Specimen height, in	5.83	
Height/diameter ratio	2.03	

Description:

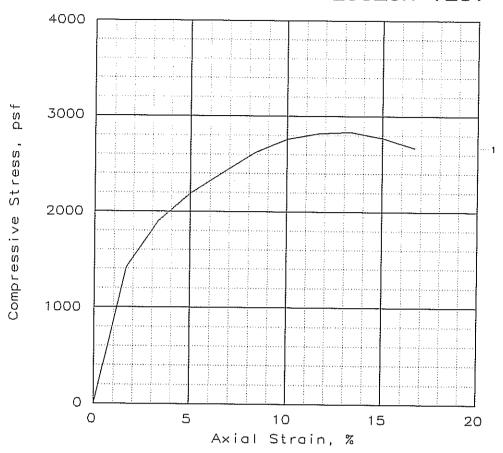
GS= 2.71 Type: Shelby tube

Project No.: 86.00481.0181

Date:

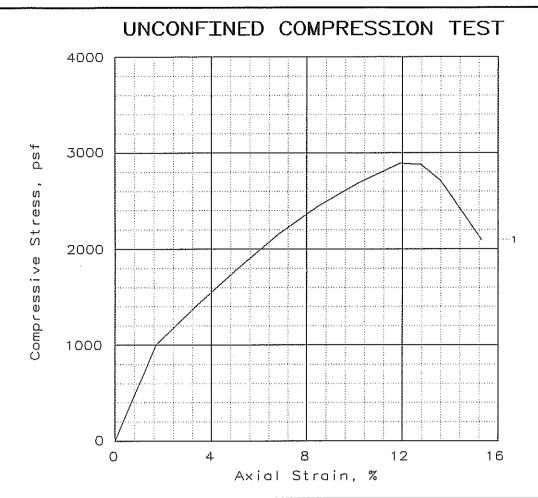
Remarks:

Fig. No.:


Client: American Structurepoint

Project: I-69

Location: TB-11, 12-14'


UNCONFINED COMPRESSION TEST

UNCONFINED COMPRESSION TEST

SAMPLE NO.:	1	
Unconfined strength, psf	2835	
Undrained shear strength, psf	1418	
Failure strain, %	13.3	
Strain rate, %/min	2.00	
Water content, %	22.3	
Wet density, pcf	125.8	
Dry density, pcf	102.8	
Saturation, %	94.3	
Void ratio	0.6398	
Specimen diameter, in	1.36	
Specimen height, in	3.00	
Height/diameter ratio	2.20	
Description:		

	GS= 2.7	Type: Split spoon
Project No.: 86.00481.0181	Client: American Cons	ulting, Inc.
Date:		•
Remarks:	Project: I-69	
	Location: TL-18, #2,	3.5-5'
	UNCONFINED	COMPRESSION TEST
Fig. No.: ——	ATC ASSO	OCIATES INC.

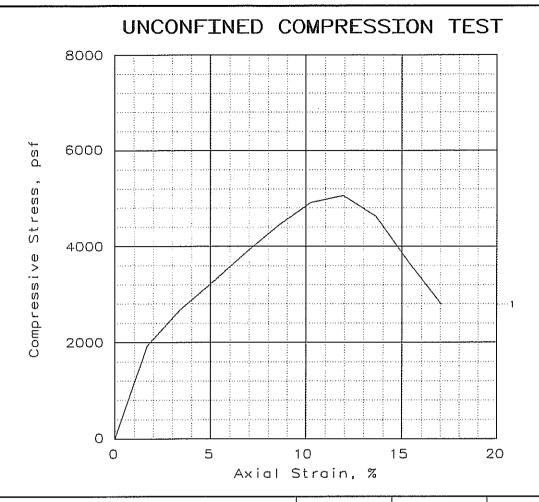
SAMPLE NO.:	1	
Unconfined strength, psf	2892	
Undrained shear strength, psf	1446	
Failure stroin, %	11.9	
Strain rate, %/min	2.00	
Water content, %	24.0	
Wet density, pcf	124.6	
Dry density, pcf	100.5	
Saturation, %	95.5	
Void ratio	0.6774	
Specimen diameter, in	1.37	
Specimen height, in	2.94	
Height/diameter ratio	2.14	
Description:		

GS= 2.7 Project No.: 086.00481.0181

Date:

Remarks:

Fig. No.:


Client: American Structurepoint

Project: I-69

Location: TL-21, #1, 1-2.5'

UNCONFINED COMPRESSION TEST

Type: Split spoon

SAMPLE NO.:	1	
Unconfined strength, psf	5059	
Undrained shear strength, psf	2529	
Failure strain, %	12.0	
Strain rate, %/min	2.00	
Water content, %	21.1	
Wet density, pcf	126.1	
Dry density, pcf	104.1	
Saturation, %	92.2	
Void ratio	0.6191	
Specimen diameter, in	1.35	
Specimen height, in	2.93	
Height/diameter ratio	2.17	

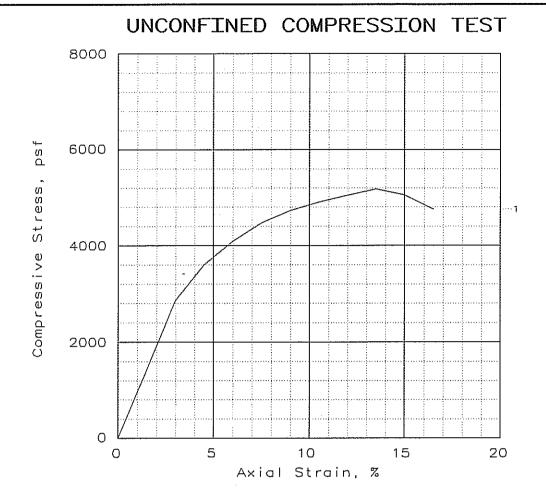
Description:

GS= 2.7 Type: Split spoon

Project No.: 086.00481.0181

Date:

Remarks:


Fig. No.: -

Client: American Structurepoint

Project: I-69

Location: TL-21, #3, 6-7.5'

UNCONFINED COMPRESSION TEST

SAMPLE NO.:	1	·	
Unconfined strength, psf	5182		
Undrained shear strength, psf	2591		
Failure strain, %	13.5		
Strain rate, %/min	2.00		
Water content, %	18.5		
Wet density, pcf	119.3		
Dry density, pcf	100.7		
Saturation, %	73.9		
Void ratio	0.6739		
Specimen diameter, in	1.52		
Specimen height, in	3.33		
Height/diameter ratio	2.19		
Description:			

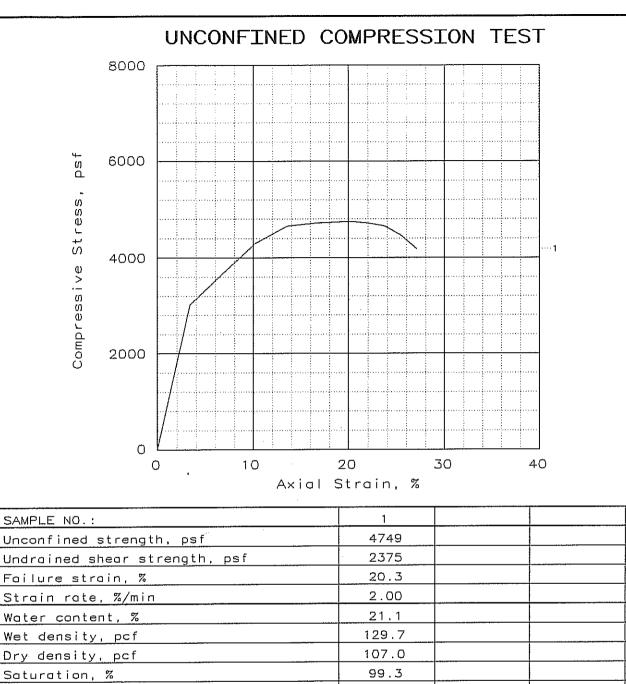
Fig. No.: -

Project No.: 085.00481.0181

Client: American Structurepoint

Date:

Remorks:


Project: I-69

GS = 2.7

Location: TL-22, #3B, 6-7.5'

UNCONFINED COMPRESSION TEST

Type: Split spoon

Unconfined strength, psf	4749		
Undrained shear strength, psf	2375		
Foilure strain, %	20.3		
Strain rate, %/min	2.00		
Water content, %	21.1		
Wet density, pcf	129.7		
Dry density, pcf	107.0		
Saturation, %	99.3		
Void ratio	0.5747	:	
Specimen diameter, in	1.36		
Specimen height, in	2.95	 	
Height/diameter ratio	2.17		

Description:

•	GS= 2./		Type:	Spirt	spoon
		-			

Project No.: 086.00481.0181

Date:

Remarks:

Client: American Structurepoint

Project: I-69

Location: TL-22, #4B, 8.5-10'

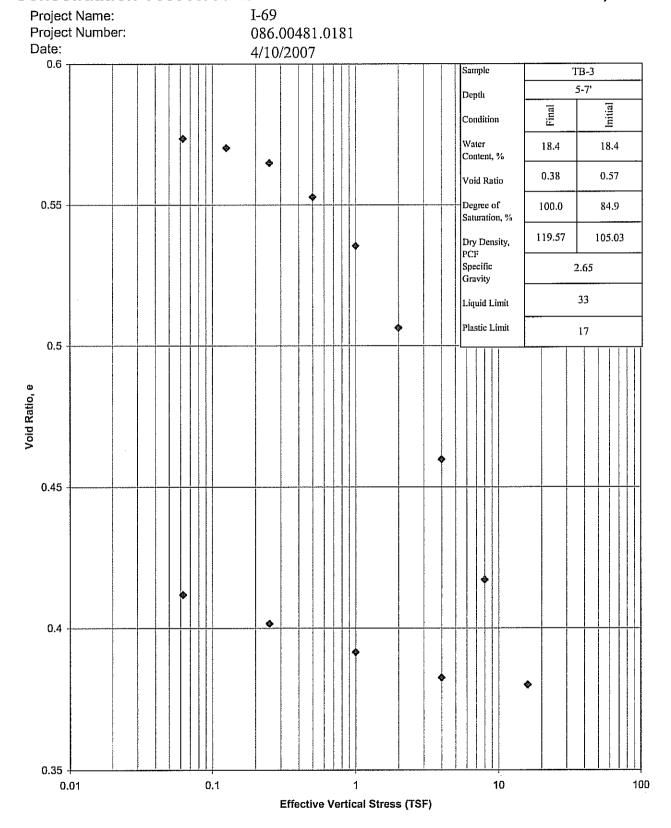
UNCONFINED COMPRESSION TEST

ATC ASSOCIATES INC.

Fig. No.: -

69-I

086.00481.0181 4/10/2007 Project Name: Project Number: Date:


Consolidation Test Results

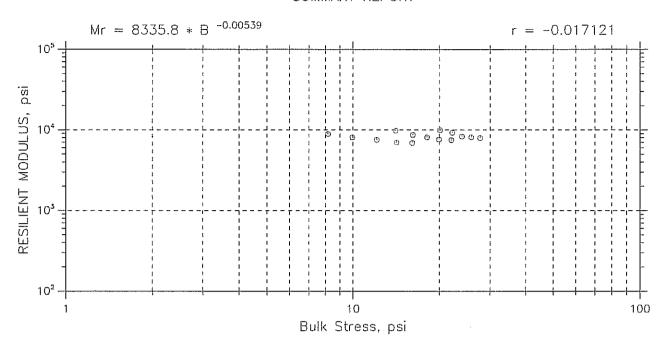
Void Ratio		0.573892842	0.573578064	0.570272889	0.564921653	0.552802678	0.535411162	0.506294145	0.459785611	0.417133115	0.379989244	0.382507473	0.391478662	0.401551576	0.41178188	0.573892842	0.573892842	0.573892842	0.573892842	0.573892842	0.573892842	0.573892842	
Delta H	in	0	0.0002	0.0023	0.0057	0.0134	0.02445	0.04295	0.0725	0.0996	0.1232	0.1216	0.1159	0.1095	0.103	0	0	0	0	0	0	0	
ding	ij	0	0.0002	0.0023	0.0057	0.0134	0.02445	0.04295	0.0725	0.0996	0.1232	0.1216	0.1159	0.1095	0.103	0	0	0	0	0	0	0	
Dial Reading	in x 10-4	0	2	23	57	134	244.5	429.5	725	966	1232	1216	1159	1095	1030								
<u> </u>	kPa	0	5.98165625	11.9633125	205	47.85325	95.7065	191.413	382.826	2183	1531.304	382.826	95.7065	23.926625	5.98165625	0	0	0	0	0	0	0	
Load	tsf	0	0.0625	0.125	0.25	0.5	П	2	4	œ	16	4	-	0.25	90.0								
		2.5 in	1.000 in	24.88 gr	24.89 gr	20	16.38 gr/cu.in	35.38 gr	100 %														
Input Values		Ring Diameter = 2		Wt. Water, Wi = 24.8		Specific Gravity, Gs = 2.650		_	Final Saturation, Sf= 10														Calculated Values

								_
	lsiiin1	18.4	0.57	84.9	105.03			
5-7	leni3	18.4	0,38	100.0	119.57	2,65	33	1.3
Depth:	Condition	Water Content, %	Void Ratio	Degree of Saturation, %	Dry Density, PCF	Specific Gravity	Liquid Limit	Plactic I imit
1.789886723 cu.in	0.573892842	43.407 gr/cu.in	1.518925519 cu.in	84.86154455 %	105.0303085 pcf	119.5700233 pcf		
Initial Volume of Voids, Vvi= 1.789886723 cu.in	Initial Void Ratio, ei= 0.573892842	Unit Weight of Soil Solids=	Intial Volume of Water, Vwi= 1.518925519 cu.in	Initial Saturation, Si= 84.86154455 %	Initial Dry Density,Ki= 105.0303085 pcf	Final Dry Density, Kf= 119.5700233 pcf		
A= 4.909 sq.in	wi= 18.38 %	wf≕ 18.39 %	Vs= 3.1188518 cu.in	Height of Solids, Hs= 0.6353673 in	Vf= 4.3118359 cu.in	/vf= 1.1929841 cu.in	ef= 0.3825075	
Sample Area, A=	Intial Moisture Content, wi=	Final Moisture Content, wf=	Volume of Soil Solids, Vs= 3.1188518 cu.in	Height of Solids,	Final Volume of Sample, Vf= 4.3118359 cu.in	Final Volume of Voids, Vvf= 1.1929841 cu.in	Final Void Ratio, ef= 0.3825075	

Consolidation Test Results

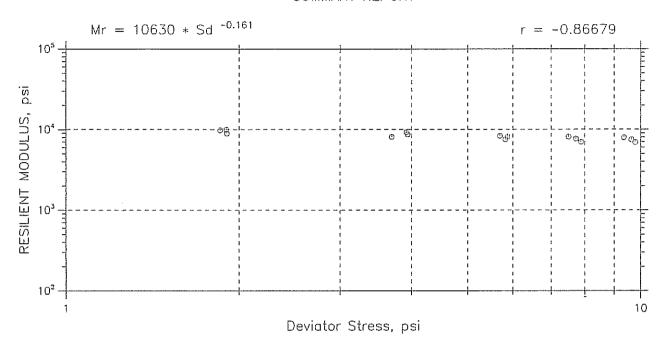
ATC Associates, Inc

APPENDIX D

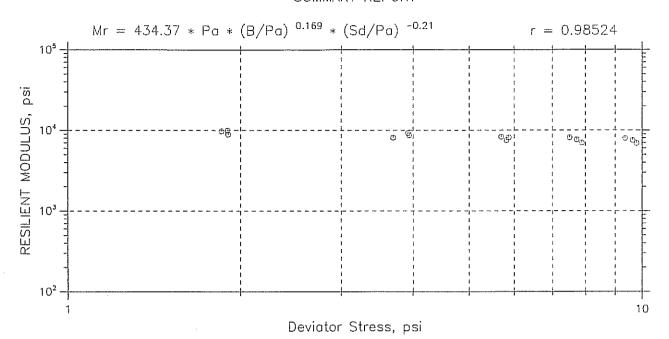

RESILIENT MODULUS TEST RESULTS

Client:	ATC Assosciates, Inc	Test Date:	03/26/07				
Project Name:	I-69	Tested By:	njh				
Project Location:		Checked By:	jdt				
GTX #:	7359						
Boring ID:	11253						
Sample ID:	RB-6 Bulk						
Depth, ft.	1.0-5.0 ft.						
Soil Description:	Silty Clay Loam						
Sample Preparation:	Target Compaction: 95% of Maximum D Optimum Moisture Content (13.0%)	ry Density (115.0	pcf) at				
Material Type:	Type 2						
Test No.:	RM1						
Test Comments:	Comments: Atterberg Limits, Sieve Analysis, Sample Description and Proctor values provided by client.						

Resilient Modulus of Subgrade Soil by AASHTO T 307


Test Information:		
	Preconditioning-Greater than 5% perm. strain? (Y=yes or N=no)	N
	Testing-greater than 5% perm. Strain? (Y=yes or N=no)	N
	Testing-Number of Load Sequences Completed (0-15)	15
Specimen Informatio	π: .	
	Diameter @ top of compacted specimen (in.)	4.01
	Diameter @ middle of compacted specimen (in.)	4.01
	Diameter @ bottom of compacted specimen (in.)	4.01
	Average Diameter of specimen (in.)	4.01
	Membrane Thickness {1} (in.)	0.01
	Membrane Thickness {2} (In.)	0
	Net Diameter (in.)	4.00
	Height of Specimen, Cap and Base, (in.)	10.3
	Height Cap and Base, (in.)	2.3
	Initial Length of Specimen, Lo, (in.)	8.00
	Initial Area Cross Section of Specimen, Ao, (in²)	12.54
	Initial Volume of Specimen, (Ao)(Lo), (in³)	100.4
	Soil Specimen Weight	
	Initial Weight of Container and Wet Soil, (grams)	
	Final Weight of Container and Wet Soil, (grams)	100 Tex-400
	Weight of Wet Soil Used (grams)	3258.0
Soil Properties:		
	In Situ Moisture Content(Nuclear), %	N/A
	In Situ Wet Density (Nuclear), (pcf)	N/A
	Specific Gravity	
	Liquid Limit	33
	Plastic Limit	19
	Plasticity Index	14
Test Specimen Prope	rties:	
,	Compaction Moisture Content, %	12.3
	Moisture Content after Resilent Modulus Testing, %	13.4
	Compaction Dry Density r_d , pcf	110.1
	Permanent Strain, %	0.5
	Quick Shear Test	N/A
	Stress-Strain Plot Attached (Y=yes, N=no)	NO
	Triaxial Shear Maximum Strength (Max Load/X-Section Area), psi	N/A
	Specimen Fail During Triaxial Shear? (Y=yes, N=no)	N/A

Confining	Nom. Max.	Mean	Std. Dev.	Mean .	Mean	Std. Dev.	Mean	Std. Dev.
Stress	Deviator	Deviator	Deviator	Bulk	Resilient	Resilient	Resilient	Resilient
S 3	Stress	Stress	Stress	Stress	Strain	Strain	Modulus	Modulus
(psi)	(psi)	(psi)	(psi)	(psi)	(%)	(%)	(psi)	(psi)
6.051	2	1.898	0.0029	20.05	0.02	0.00	9961.7	196.49
6.055	4	3.916	0.0312	22.08	0.04	0.00	9253.2	175.26
6.054	6	5.686	0.0406	23.85	0.06	0.00	8311.9	71.768
6.068	8	7.502	0.0225	25.71	0.08	0.00	8130.8	32.93
6.077	10	9.36	0.0044	27.59	0.11	0.00	7958.5	61.192
4.076	2	1.852	0.0021	14.08	0.02	0.00	9802	358.31
4.075	4	3.934	0.0263	16.16	0.04	0.00	8704.8	286.8
4.078	6	5.868	0.0392	18.1	0.07	0.00	8114.6	38.831
4.063	8	7.721	0.0493	19.91	0.09	0.00	7649.5	51.218
4.093	10	9.635	0.0591	21.91	0.12	0.00	7491.5	42.904
2.087	2	1.903	0.0165	8.163	0.02	0.00	8913.7	372.63
2.084	4	3.69	0.0086	9.942	0.04	0.00	8119.1	48.48
2.089	6	5.811	0.0128	12.08	0.07	0.00	7524.9	77.651
2.1	8	7.881	0.0342	14.18	0.10	0.00	6997.5	51.515
2.099	10	9.783	0.0453	16.08	0.13	0.00	6915.6	25.06

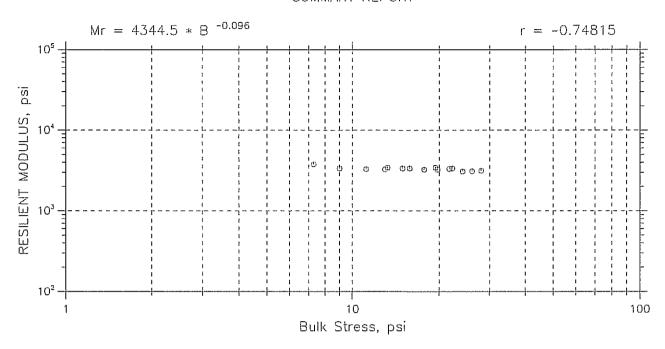

roject: I-69 Location:		Project No.: GTX-7359
Boring No.:	Tested By: njh	Checked By: jdt
Sample No.: RB-6 bulk	Test Date: 03/26/07	Depth: 1-5 ft
Test No.: RM1	Sample Type: compacted	Elevation:
Description: Silty Clay Loam		
Remarks: System D - Target Com	paction: 95% of 115 pcf @ 13.0% mois	sture content (optimum)
File: D:\system D\RM\7359-rm1.	dat	

Confining	Nom Mari	Mogg	Std Day	Maga	Mean	Std. Dev.	Mean	Std. Dev.
Confining	Nom. Max.	Mean	Std. Dev.	Mean				
Stress	Deviator	Deviator	Deviator	Bulk	Resilient	Resilient	Resilient	Resilient
S3	Stress	Stress	Stress	Stress	Strain	Strain	Modulus	Modulus
(psi)	(psi)	(psi)	(psi)	(psi)	(%)	(%)	(psi)	(psi)
6.051	2	1.898	0.0029	20.05	0.02	0.00	9961.7	196.49
6.055	4	3.916	0.0312	22.08	0.04	0.00	9253.2	175.26
6.054	6	5.686	0.0406	23.85	0.06	0.00	8311.9	71.768
6.068	8	7.502	0.0225	25.71	0.08	0.00	8130.8	32.93
6.077	10	9.36	0.0044	27.59	0.11	0.00	7958.5	61.192
4.076	2	1.852	0.0021	14.08	0.02	0.00	9802	358.31
4.075	4	3.934	0.0263	16.16	0.04	0.00	8704.8	286.8
4.078	6	5.868	0.0392	18.1	0.07	0.00	8114.6	38.831
4.063	8	7.721	0.0493	19.91	0.09	0.00	7649.5	51.218
4.093	10	9.635	0.0591	21.91	0.12	0.00	7491.5	42.904
2.087	2	1.903	0.0165	8.163	0.02	0.00	8913.7	372.63
2.084	4	3.69	0.0086	9.942	0.04	0.00	8119.1	48.48
2.089	6	5.811	0.0128	12.08	0.07	0.00	7524.9	77.651
2.1	8	7.881	0.0342	14.18	0.10	0.00	6997.5	51.515
2.099	10	9.783	0.0453	16.08	0.13	0.00	6915.6	25.06

Project: 1-69	Location:	Project No.: GTX-7359
Boring No.:	Tested By: njh	Checked By: jdt
Sample No.: RB-6 bulk	Test Date: 03/26/07	Depth: 1-5 ft
Test No.: RM1	Sample Type: compacted	Elevation:
Description: Silty Clay Loam		
Remarks: System D - Target Co	mpaction: 95% of 115 pcf @ 13.0% mois	sture content (optimum)
File: D:\system D\RM\7359-rm1	.dat	

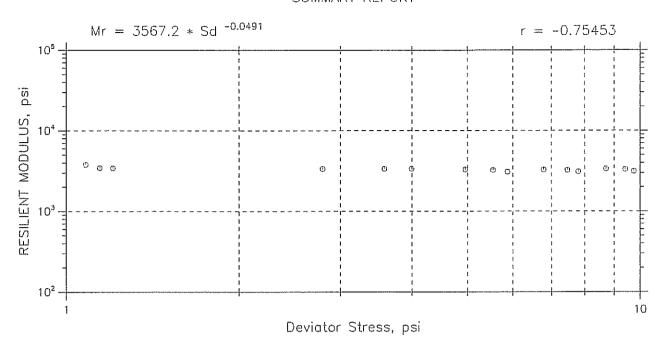
Confining	Nom. Max.	Mean	Std. Dev.	Mean	Mean	Std. Dev.	Mean	Std. Dev.
Stress	Deviator	Deviator	Deviator	Bulk	Resilient	Resilient	Resilient	Resilient
53	Stress	Stress	Stress	Stress	Strain	Strain	Modulus	Modulus
(psi)	(psi)	(isq)	(psi)	(psi)	(%)	(%)	(psi)	(psi)
6.051	. 2	1.898	0.0029	20.05	0.02	0.00	9961.7	196.49
6.055	4	3.916	0.0312	22.08	0.04	0.00	9253.2	175.26
6.054	6	5.686	0.0406	23.85	0.06	0.00	8311.9	71.768
6.068	8	7.502	0.0225	25.71	0.08	0.00	8130.8	32.93
6.077	10	9.36	0.0044	27.59	0.11	0.00	7958.5	61.192
4.076	2	1.852	0.0021	14.08	0.02	0.00	9802	358.31
4.075	4	3.934	0.0263	16.16	0.04	0.00	8704.8	286.8
4.078	6	5.868	0.0392	18.1	0.07	0.00	8114.6	38.831
4.063	8	7.721	0.0493	19.91	0.09	0.00	7649.5	51.218
4.093	10	9.635	0.0591	21.91	0.12	0.00	7491.5	42.904
2.087	2	1.903	0.0165	8.163	0.02	0.00	8913.7	372.63
2.084	4	3.69	0.0086	9.942	0.04	0.00	8119.1	48.48
2.089	6	5.811	0.0128	12.08	0.07	0.00	7524.9	77.651
2.1	00	7.881	0.0342	14.18	0.10	0.00	6997.5	51.515
2.099	10	9.783	0.0453	16.08	0.13	0.00	6915.6	25.06

Project: 1-69	Location:	Project No.: GTX-7359
Boring No.:	Tested By: njh	Checked By: jdt
Sample No.: RB-6 bulk	Test Date: 03/26/07	Depth: 1-5 ft
Test No.: RM1	Sample Type: compacted	Elevation:
Description: Silty Clay Loam		
Remarks: System D - Target Co	mpaction: 95% of 115 pcf @ 13.0% mois	sture content (optimum)
File: D:\system D\RM\7359-rm	l dat	

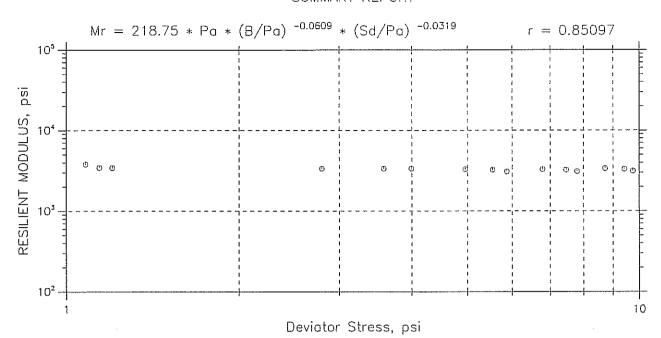


a subsidiary of Geocologi Corporation

Client:	ATC Assosciates, Inc	Test Date:	03/27/07					
Project Name:	I-69	Tested By:	njh					
Project Location:	NA 400 400	Checked By:	jdt					
GTX #:	7359							
Boring ID:	11253							
Sample ID:	RB-6 Bulk							
Depth, ft.	1.0-5.0 ft.							
Soil Description:	Silty Clay Loam							
Sample Preparation:	Target Compaction: 95% of Maximum Dr Optimum + 2% Moisture Content (15.0%	, , ,	pcf) at					
Material Type:	Type 2							
Test No.:	RM2							
Test Comments:	Comments: Atterberg Limits, Sieve Analysis, Sample Description and Proctor values provided by client.							


Resilient Modulus of Subgrade Soil by AASHTO T 307

Test Information:			
	Preconditioning-Greater than 5% perm. strain? (Y=yes or N=no)	N	
	Testing-greater than 5% perm. Strain? (Y=yes or N=no)	N	
	Testing-Number of Load Sequences Completed (0-15)	15	
Specimen Information:			
	Diameter @ top of compacted specimen (in.)	4.01	
	Diameter @ middle of compacted specimen (in.)	4.01	
	Diameter @ bottom of compacted specimen (in.)	4.01	
	Average Diameter of specimen (in.)	4.01	
	Membrane Thickness {1} (in.)	0.01	
	Membrane Thickness {2} (in.)	0	
	Net Diameter (in.)	4.00	
	Height of Specimen, Cap and Base, (in.)	10.3	
	Height Cap and Base, (in.)	2.3	
	Initial Length of Specimen, Lo, (in.)	8.00	
	Initial Area Cross Section of Specimen, Ao, (in²)	12.54	
	Initial Volume of Specimen, (Ao)(Lo), (in ³)	100.4	
	Soil Specimen Weight		
	Initial Weight of Container and Wet Soil, (grams)		
	Final Weight of Container and Wet Soil, (grams)		
	Weight of Wet Soil Used (grams)	3315.0	
Soil Properties:			
	In Situ Moisture Content(Nuclear), %	N/A	
	In Situ Wet Density (Nuclear), (pcf)	N/A	
	Specific Gravity		
	Liquid Limit	33	
	Plastic Limit	19	
	Plasticity Index	14	
Test Specimen Properti	es:		
•	Compaction Moisture Content, %	15.4	
	Moisture Content after Resilent Modulus Testing, %	14.9	
	Compaction Dry Density r _d , pcf	109.0	
	Permanent Strain, %	1.1	
	Quick Shear Test	N/A	
	Stress-Strain Plot Attached (Y=yes, N=no)	NO	
	Triaxial Shear Maximum Strength (Max Load/X-Section Area), psi	N/A	


Confining	Nom. Max.	Mean	Std. Dev.	Mean	Mean	Std. Dev.	Mean	Std. Dev.
Stress	Deviator	Deviator	Deviator	Bulk ·	Resilient	Resilient	Resilient	Resilient
S3	Stress	Stress	Stress	Stress	Strain	Strain	Modulus	Modulus
(psi)	(psi)	(psi)	(psi)	(psi)	(%)	(%)	(psi)	(psi)
6.065	2	1.203	0.0231	19.4	0.03	0.00	3435.6	131.14
6.059	4	3.991	0.0122	22.17	0.11	0.00	3370.4	33.425
6.063	6	5.869	0.0171	24.06	0.18	0.00	3084.3	20.194
6.063	8	7.792	0.0236	25.98	0.23	0.00	3103.3	11.425
6.065	10	9.746	0.0287	27.94	0.28	0.00	3141.6	18.545
4.046	2	1.142	0.0169	13.28	0.03	0.00	3448.5	82.965
4.076	4	3.578	0.0101	15.8	0.10	0.00	3365.8	32.221
4.056	6	5.536	0.0071	17.7	0.16	0.00	3248.6	10.256
4.079	8	7.461	0.0021	19.7	0.21	0.00	3242.5	11.285
4.074	10	9.416	0.0046	21.64	0.26	0.00	3317.3	9.3105
2.073	2	1.08	0.0061	7.299	0.03	0.00	3793.6	104.03
2.067	4	2.793	0.0332	8.995	80.0	0.00	3365.8	91.725
2.072	6	4.951	0.0197	11.17	0.14	0.00	3303.4	16.827
2.073	8	6.785	0.0275	13	0.19	0.00	3286.1	9.9955
2.074	10	8.713	0.0267	14.93	0.23	0.00	3369.3	11.629
						_		

Project: 1-69 Location:		Project No.: GTX-7359
Boring No.: 11253	Tested By: njh	Checked By: jdt
Sample No.: RB-6 bulk	Test Date: 03/26/07	Depth: 1-5 ft
Test No.: RM2	Sample Type: compacted	Elevation:
Description: Silty Clay Loam		
Remarks: System D - Target Comp	action: 95% of 115 pcf @ 15.0% mois	sture content (optimum + 2)
File: D:\system D\RM\7359-rm2.d	at .	

Confining	Nom. Max.	Mean	Std. Dev.	Mean	Mean	Std. Dev.	Mean	Std. Dev.
Stress	Deviator	Deviator	Deviator	Bulk	Resilient	Resilient	Resilient	Resilient
S3	Stress	Stress	Stress	Stress	Strain	Strain	Modulus	Modulus
(psi)	(psi)	(psi)	(psi)	(psi)	(%)	(%)	(psi)	(psi)
6.065	2	1.203	0.0231	19.4	0.03	0.00	3435.6	131.14
6.059	4	3.991	0.0122	22.17	0.11	0.00	3370.4	33.425
6.063	6	5.869	0.0171	24.06	0.18	0.00	3084.3	20.194
6.063	8	7.792	0.0236	25.98	0.23	0.00	3103.3	11.425
6.065	10	9.746	0.0287	27.94	0.28	0.00	3141.6	18.545
4.046	2	1.142	0.0169	13.28	0.03	0.00	3448.5	82.965
4.076	4	3.578	0.0101	15.8	0.10	0.00	3365.8	32.221
4.056	6	5.536	0.0071	17.7	0.16	0.00	3248.6	10.256
4.079	8	7.461	0.0021	19.7	0.21	0.00	3242.5	11.285
4.074	10	9.416	0.0046	21.64	0.26	0.00	3317.3	9.3105
2.073	2	1.08	0.0061	7.299	0.03	0.00	3793.6	104.03
2.067	4	2.793	0.0332	8.995	0.08	0.00	3365.8	91.725
2.072	6	4.951	0.0197	11.17	0.14	0.00	3303.4	16.827
2.073	8	6.785	0.0275	13	0.19	0.00	3286.1	9.9955
2.074	10	8.713	0.0267	14.93	0.23	0.00	3369.3	11.629

Project: 1-69	Location:	Project No.: GTX-7359
Boring No.: 11253	Tested By: njh	Checked By: jdt
Sample No.: RB-6 bulk	Test Date: 03/26/07	Depth: 1-5 ft
Test No.: RM2	Sample Type: compacted	Elevation:
Description: Silty Clay Loam		
Remarks: System D - Target C	ompaction: 95% of 115 pcf @ 15.0% mois	sture content (optimum + 2)
File: D:\system D\RM\7359-rr	n2 dat	

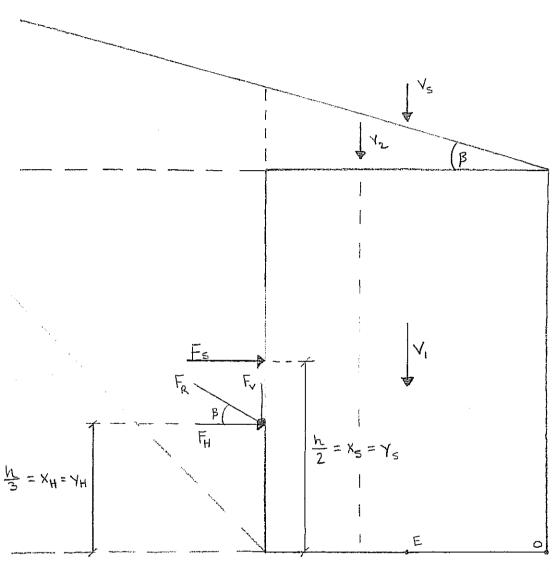
Confining	Nom. Max.	Mean	Std. Dev.	Mean	Mean	Std. Dev.	Mean	Std. Dev.
1				1	•	·		
Stress	Deviator	Deviator	Deviator	Bulk	Resilient	Resilient	Resilient	Resilient
S3	Stress	Stress	Stress	Stress	Strain	Strain	Modulus	Modulus
(jed)	(psi)	(psi)	(psi)	(psi)	(%)	(%)	(psi)	(psi)
6.065	2	1.203	0.0231	19.4	0.03	0.00	3435.6	131.14
6.059	4	3.991	0.0122	22.17	0.11	0.00	3370.4	33.425
6.063	6	5.869	0.0171	24.06	0.18	0.00	3084.3	20.194
6.063	8	7.792	0.0236	25.98	0.23	0.00	3103.3	11.425
5.065	10	9.746	0.0287	27.94	0.28	0.00	3141.6	18.545
4.046	2	1.142	0.0169	13.28	0.03	0.00	3448.5	82.965
4.076	4	3.578	0.0101	15.8	0.10	0.00	3365.8	32.221
4.056	6	5.536	0.0071	17.7	0.16	0.00	3248.6	10.256
4.079	8	7.461	0.0021	19.7	0.21	0.00	3242.5	11.285
4.074	10	9.416	0.0046	21.64	0.26	0.00	3317.3	9.3105
2.073	2	1.08	0.0061	7.299	0.03	0.00	3793.6	104.03
2.067	4	2.793	0.0332	8.995	0.08	0.00	3365.8	91.725
2.072	6	4.951	0.0197	11.17	0.14	0.00	3303.4	16.827
2.073	8	6.785	0.0275	13	0.19	0.00	3286.1	9.9955
2.074	10	8.713	0.0267	14.93	0.23	0.00	3369.3	11.629

Project: 1–69	Location:	Project No.: GTX-7359
Boring No.: 11253	Tested By: njh	Checked By: jdt
Sample No.: RB-6 bulk	Test Date: 03/26/07	Depth: 1-5 ft
Test No.: RM2	Sample Type: compacted	Elevation:
Description: Silty Clay Loam		
Remarks: System D - Target Comp	paction: 95% of 115 pcf @ 15.0% moi:	sture content (optimum + 2)
File: D:\system D\RM\7359-rm2.c	lat	

APPENDIX E

CALCULATIONS FOR MSE WALL EXTERNAL STABILITY STABL6H OUTPUT FOR MSE WALL GLOBAL STABILITY

PROJECT Proposed I-69 Project Nobles Chapel Road bridge	Structurepoint MSE Abutement	PROJECT NUMBER 86.0048. SHEET OF DATE S 10 07 COMPUTED BY SW CHECKED BY	
Retained Fill	Reinford	ř.	H
	bedrock, or that is place	il is either Sir structure be ed after remo pose Shale k	ackfill oval of



CLIENT American Structurepoint

PROJECT Proposed I-69 Project

Nobles Chapel Road bridge MSE Abutement

PROJECT NUMBER <u>86.00481.0181</u>
SHEETOF
DATE 5 10 07
COMPUTED BY 5M

for siesmic $X_{H} = Y_{H} = \frac{h}{2}$ 74

$$V_{s} = (H)(L)(\chi_{RS})$$

$$V_{z} = \frac{1}{2}(L + \tan \beta)(L)(\chi_{RS})$$

$$V_{s} = (\frac{1}{2})(L)$$

$$V_{s} = (H)(L)(\aleph_{RS})$$

$$F_{R} = \frac{1}{2}(K_{a})(\aleph)(k)^{2}$$

$$V_{z} = \frac{1}{2}(L \tan \beta)(L)(\aleph_{RF})$$

$$F_{H} = F_{R} \cos \beta$$

$$F_{V} = F_{R} \sin \beta$$

$$V_{S} = (S)(L)$$

$$F_{S} = (V_{S})(k)(K_{A})$$

Bridge Structure No. 1 Nobles Chapel Road over Interstate 69

Wall Properties

Height	H = 32 ft	Length of Reinforcement
Length	L = 22.4 ft	to Heigth Ratio (L/H) =
Surcharge	S = 200 lbs/sq.ft	
Backfill Slope	$\beta = 0$ degrees	
Backfill Height	h = 32.0 ft	

Soil Properties

Retained Fill				Reinforced Zone		
Friction Angle	$\phi =$	30	degrees	Friction Angle	φ ==	34 degrees
Cohesion	c =	0	lbs./sq.ft	Cohesion	c =	0 lbs./sq.ft
Unit Weight	γ =	120	lbs/cu.ft	Unit Weight	γ =	125 lbs/cu.ft
	Ka =	0.33	•			

Bearing Soil

Friction Angle	$\phi =$	34	degrees		
Sliding Cohesion	c =	0	lbs./sq.ft	Nc =	0
Bearing Cohesion	CB =	1.40	lbs./sq.ft	Νγ =	41
Unit Weight	ν =	125	lbs/cu ff	•	

Calculated Forces

$V_1 = V_2 = V_3 =$	89600 lbs/ft 0 lbs/ft 1493 lbs/ft	F _R = F _H = F _V = F _S =	20480 lbs/ft 20480 lbs/ft 0 lbs/ft 2133 lbs/ft
X ₂ = X _H = X _V = X _S =	3.7 ft 10.7 ft 11.2 ft 16.0 ft	y ₁ = y ₂ = y _H = y _V = y _S =	11.2 ft 14.9 ft 10.7 ft 22.4 ft 16.0 ft

Eccentricity

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + F_V}$$

e = 2.8 ft must be < L/6 = 3.7 ft

Overturning

F.S. =
$$\frac{(V_1 * y_1) + (V_2 * y_2) + (F_V * y_V)}{(F_H * y_H) + (F_S * y_S)}$$

F.S. = 4.0 must be at least 2.0

Sliding

F.S. =
$$\frac{(V_1 + V_2 + F_V) * \tan \phi + c * L}{F_H + F_S}$$

F.S. = 2.7 must be at least 1.5

Bearing Capacity

General Shear

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + V_S + F_V}$$

$$\sigma_{ult} = C_B * N_c + 0.5 * \gamma * (L - 2e) * N_{\gamma}$$

$$\sigma_{v} = \frac{V_{1} + V_{2} + V_{5} + F_{V}}{L - 2 * e}$$

$$\sigma_{\text{ult}} = 42952 \text{ lbs./sq.ft}$$

$$\sigma_v = 5405 \text{ lbs./sq.ft}$$

$$\sigma_{\text{ell}} = 17181$$

 $\sigma_{\text{all}} = 17181$ based on F.S. = 2.5

Bridge Structure No. 1 Nobles Chapel Road over Interstate 69 Earthquake Condition

Wall Properties

Height	H =	32 ft
Length	L =	22.4 ft
Surcharge	S =	200 lbs/sq.ft
Backfill Slope	β =	0 degrees
Backfill Height	h =	32.0 ft

Length of Reinforcement to Heigth Ratio (L/H) = 0.7

Soil Properties

Retained Fill

Reinforced Zone

Friction Angle	φ =	30 degrees	Friction Angle	φ =	34 degrees
Cohesion	c =	0 lbs./sq.ft	Cohesion	c =	0 lbs./sq.ft
Unit Weight	γ =	120 lbs/cu.ft	Unit Weight	γ =	125 lbs/cu.ft
	Ka =	0.40 (effective seis	smic coefficient)		

Bearing Soil

Friction Angle	ф =	34 degrees	
Sliding Cohesion	c =	0 lbs./sq.ft	Nc = 0
Bearing Cohesion	CB =	lbs./sq.ft	Nγ = 41
Unit Weight	γ =	125 lbs/cu.ft	

Calculated Forces

$V_1 =$	89600 lbs/ft	F _R =	24576 lbs/ft
V2 =	0 lbs/ft	F _H =	24576 lbs/ft
$V_s =$	1792 lbs/ft	Fv =	0 lbs/ft
		Fs =	2560 lbs/ft
		y ₁ =	11.2 ft
$\chi_2 =$	3.7 ft	y ₂ =	14.9 ft
χ _H =	16.0 ft	ун =	16.0 ft
$x_V =$	11.2 ft	yv =	22.4 ft
xs =	16.0 ft	vs =	16.0 ft

Eccentricity

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + F_V}$$

Overturning

F.S. =
$$\frac{(V_1 * y_1) + (V_2 * y_2) + (F_V * y_V)}{(F_H * y_H) + (F_S * y_S)}$$

F.S. = 2.3 must be at least 1.5

Sliding

F.S. =
$$\frac{(V_1 + V_2 + F_V) * tan \phi + c * L}{F_H + F_S}$$

F.S. =

2.2 must be at least 1.1

Bearing Capacity

F.S. =
$$\frac{\sigma_{\text{ult}}}{\sigma_{\text{V}}}$$

General Shear

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + V_S + F_V}$$

$$\sigma_{ult} = -C_B * N_c + 0.5 * \gamma * (L - 2e) * N_\gamma$$

$$\sigma_v = V_1 + V_2 + V_8 + F_V$$
 $L - 2 * e$

$$\sigma_{\text{ult}} = 32566 \text{ lbs./sq.ft}$$

$$\sigma_v = 7085 \text{ lbs./sq.ft}$$

$$\sigma_{\text{ell}} = 13026.3$$

$$\sigma_{\text{ell}} = 13026.3$$
 based on F.S. = 2,5

Bridge Structure No. 1 Nobles Chapel Road over Interstate 69

0.7

Wall Properties

Height	H =	41 ft	Length of Reinforcement
Length	L =	28.7 ft	to Heigth Ratio (L/H) =
Surcharge	S =	200 lbs/sq.ft	. , ,
Backfill Slope	β =	0 degrees	
Backfill Height	h =	41.0 ft	

Soil Properties

Retained Fill Reinforced Zone

Friction Angle Cohesion Unit Weight	$\phi = 30 \text{ degrees}$ $c = 0 \text{ lbs./sq.ft}$ $\gamma = 120 \text{ lbs/cu.ft}$	Friction Angle Cohesion Unit Weight	φ = c = γ = [34 degrees 0 lbs./sq.ft 125 lbs/cu.ft
	Ka = 0.33			

Natural Soil

Friction Angle	φ = 0 degrees	
Sliding Cohesion	c = 5000 lbs./sq.ft	Nc = 5.7
Bearing Cohesion	св = 5000 lbs./sq.ft	Νγ =
Unit Weight	$\gamma = 120 \text{ lbs/cu ft}$	

Calculated Forces

V ₁ =	147088 lbs/ft	F _R =	33620 lbs/ft
V2 =	0 lbs/ft	F _H =	33620 lbs/ft
∨ s =	1913 lbs/ft	Fv =	0 lbs/ft
		Fs =	2733 lbs/ft
		y ₁ =	14.4 ft
$\chi_2 =$	4.8 ft	y ₂ =	19.1 ft
$\chi_H =$	13.7 ft	ун =	13.7 ft
$\chi_V =$	14.4 ft	yv =	28.7 ft
X5 =	20.5 ft	ys =	20.5 ft

Eccentricity

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + F_V}$$

$$e = 3.5 \text{ ft}$$
 must be $< L/6 = 4.8 \text{ ft}$

Overturning

F.S. =
$$\frac{(V_1 * y_1) + (V_2 * y_2) + (F_V * y_V)}{(F_H * y_H) + (F_S * y_S)}$$

F.S. = 4.1 must be at least 2.0

Sliding

F.S. =
$$\frac{(V_1 + V_2 + F_V) * \tan \phi + c * L}{F_H + F_S}$$

F.S. =

3.9 must be at least 1.5

Bearing Capacity

F.S. =
$$\frac{\sigma_{\text{ull}}}{\sigma_{\text{V}}}$$

General Shear

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + V_S + F_V}$$

$$\sigma_{ult} = -C_B * N_c + 0.5 * \gamma * (L - 2e) * N_{\gamma}$$

$$\sigma_{v} = \frac{V_1 + V_2 + V_5 + F_V}{L - 2 * e}$$

 $\sigma_{\text{ult}} = 28500 \text{ lbs./sq.ft}$

 $\sigma_v = 6841 \text{ lbs./sq.ft}$

 $\sigma_{\text{all}} = 11400$ based on F.S. = 2.5

F.S. = 4.2 must be at least 2.5

Local Shear

$$\gamma_{RZ} * H = 5125$$
 lbs/sq.ft

3 * c = 15000

lbs/sq.ft

Bridge Structure No. 1 Nobles Chapel Road over Interstate 69 Earthquake Condition

Wall Properties

Height	H =	41 ft
Length	L =	28.7 ft
Surcharge	S =	200 lbs/sq.ft
Backfill Slope	β =	0 degrees
Backfill Height	h =	41.0 ft

Length of Reinforcement to Heigth Ratio (L/H) =

Soil Properties

Retained Fill

Friction Angle $\phi = 30$ degrees Cohesion c = 0 lbs./sq.ft Unit Weight $\gamma = 120$ lbs/cu.ft Ka = 0.40

Reinforced Zone Friction Angle

Cohesion
Unit Weight

 ϕ = 34 degrees c = 0 lbs./sq.ft γ = 125 lbs/cu.ft

0.7

Natural Soil

Friction Angle $\phi = 0$ degrees Sliding Cohesion c = 5000 lbs./sq.ft Bearing Cohesion $c_B = 5000$ lbs./sq.ft Unit Weight $\gamma = 120$ lbs/cu.ft

Nc = 5.7 $N\gamma = 0$

Calculated Forces

$V_1 = V_2 = V_3 =$	147088 lbs/ft 0 lbs/ft 2296 lbs/ft	Fr = F _H = F _V = F _S =	40344 lbs/ft 40344 lbs/ft 0 lbs/ft 3280 lbs/ft
X2 = XH = XV = XS =	4.8 ft 20.5 ft 14.4 ft 20.5 ft	у1 = y2 = ун = yv = ys =	14.4 ft 19.1 ft 20.5 ft 28.7 ft 20.5 ft

Eccentricity

$$e = \frac{(F_H * x_H) + (F_S * x_S) - (V_2 * x_2) - (F_V * x_V)}{V_1 + V_2 + F_V}$$

e = 6.1 ft must be < L/6 =

4.8 ft

Overturning

F.S. =
$$\frac{(V_1 * y_1) + (V_2 * y_2) + (F_V * y_V)}{(F_H * y_H) + (F_S * y_S)}$$

F.S. = 2.4

must be at least 1.5

Sliding

F.S. =
$$\frac{(V_1 + V_2 + F_V) * \tan \phi + c * L}{F_H + F_S}$$

F.S. = 3.3 must be at least 1.1

Bearing Capacity

General Shear

$$e = \frac{(F_H * x_H) + (F_S * x_S) - (V_2 * x_2) - (F_V * x_V)}{V_1 + V_2 + V_S + F_V}$$

$$e = 6.0 \text{ ft}$$

$$\sigma_{ult} = C_B * N_c + 0.5 * \gamma * (L - 2e) * N_{\gamma}$$

$$\sigma_{v} = \frac{V_{1} + V_{2} + V_{5} + F_{V}}{L - 2 * e}$$

 $\sigma_{\text{ult}} = 28500 \text{ lbs./sq.ft}$

 $\sigma_v = 8931 \text{ lbs./sq.ft}$

 $\sigma_{\text{all}} = 11400$ based on F.S. = 2.5

F.S. = 3.2 must be at least 1.9

Local Shear

 $\gamma_{RZ} * H = 5125$

lbs/sq.ft

3*c = 15000

lbs/sq.ft

Bridge Structure No. 1 Nobles Chapel Road over Interstate 69

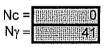
Wall Properties

Height	H =	41 ft
Length	L =	28.7 ft
Surcharge	S = 🕮	200 lbs/sq.ft
Backfill Slope	β =	O degrees
Backfill Height	h =	41.0 ft

Length of Reinforcement to Heigth Ratio (L/H) = 0.7

Soil Properties

Unit Weight $\gamma =$ 120 lbs/cu.ft Ka = 0.33


Reinforced Zone

Friction Angle Cohesion Unit Weight

 $\phi = 34 \text{ degrees}$ c = 0 lbs./sq.ft $\gamma = 125 \text{ lbs/cu.ft}$

Bearing Soil

Friction Angle $\phi = 334$ degrees Sliding Cohesion c = 90 lbs./sq.ft Bearing Cohesion $c_B = 90$ lbs./sq.ft Unit Weight $c_B = 90$ lbs./sq.ft

Calculated Forces

$V_1 = V_2 = V_S =$	147088 lbs/ft 0 lbs/ft 1913 lbs/ft	Fr = Fn = Fv = Fs =	33620 lbs/ft 33620 lbs/ft 0 lbs/ft 2733 lbs/ft
		y1 =	14.4 ft
$\chi_2 =$	4.8 ft	y ₂ =	19.1 ft
хн =	13.7 ft	y _H =	13.7 ft
xv =	14.4 ft	y _v =	28.7 ft
$x_s =$	20.5 ft	ys =	20,5 ft

Eccentricity

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + F_V}$$

Overturning

F.S. =
$$\frac{(V_1 * y_1) + (V_2 * y_2) + (F_V * y_V)}{(F_H * y_H) + (F_S * y_S)}$$

F.S. = 4.1 must be at least 2.0

Sliding

F.S. =
$$\frac{(V_1 + V_2 + F_V) * \tan \phi + c * L}{F_H + F_S}$$

F.S. = 2.7 must be at least 1.5

Bearing Capacity

General Shear

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + V_S + F_V}$$

$$\sigma_{ult} = -C_B * N_c + 0.5 * \gamma * (L - 2e) * N_{\gamma}$$

$$\sigma_v = \frac{V_1 + V_2 + V_S + F_V}{L - 2 * e}$$

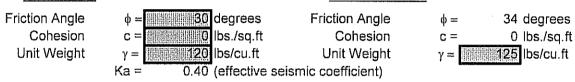
out = 55582 lbs./sq.ft

 $\sigma_v = 6841 \text{ lbs./sq.ft}$

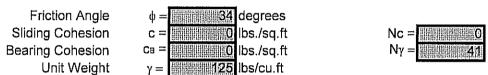
 $\sigma_{\text{all}} = 22232.7$ based on F.S. = 2.5

F.S. = 8.1 must be at least 2.5

Bridge Structure No. 1 Nobles Chapel Road over Interstate 69 Earthquake Condition


Wall Properties

Length of Reinforcement to Heigth Ratio (L/H) = 0.7


Soil Properties

Retained Fill

Reinforced Zone

Bearing Soil

Calculated Forces

V1 =	147088 lbs/ft	F _R =	40344 lbs/ft
V ₂ =	0 lbs/ft	Fn =	40344 lbs/ft
Vs =	2296 lbs/ft	Fv =	0 lbs/ft
		Fs =	3280 lbs/ft
		y1 =	14.4 ft
$\chi_2 =$	4.8 ft	y ₂ =	19.1 ft
x _H =	20.5 ft	y _H =	20.5 ft
xv =	14.4 ft	y _v =	28.7 ft
xs =	20.5 ft	ys =	20.5 ft

Eccentricity

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + F_V}$$

$$e = 6.1 \text{ ft}$$
 must be $< L/6 = 4.8 \text{ ft}$

Overturning

F.S. =
$$\frac{(V_1 * y_1) + (V_2 * y_2) + (F_V * y_V)}{(F_H * y_H) + (F_S * y_S)}$$

F.S. = 2.4 must be at least 1.5

Sliding

F.S. =
$$\frac{(V_1 + V_2 + F_V) * \tan \phi + c * L}{F_H + F_S}$$

2.3 must be at least 1.1

Bearing Capacity

General Shear

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + V_S + F_V}$$

$$\sigma_{ult} = C_B * N_c + 0.5 * \gamma * (L - 2e) * N_{\gamma}$$

$$\sigma_{v} = \frac{V_{1} + V_{2} + V_{5} + F_{V}}{L - 2 * e}$$

$$\sigma_{\text{ult}} = 42384 \text{ lbs./sq.ft}$$

$$\sigma_v = 8931 \text{ lbs./sq.ft}$$

$$\sigma_{\text{all}} = 16953.5$$

 $\sigma_{\text{all}} = 16953.5$ based on F.S. = 2.5

F.S. = 4.7 must be at least 1.9

Bridge Structure No. 1 Nobles Chapel Road over Interstate 69

Wall Properties

Height	H =	32	ŧ
Length	L =	22.4	t
Surcharge	S =	200	bs/sq.ft
Backfill Slope	β =		degrees
Backfill Height	h =	32.0 1	ŧ

Length of Reinforcement to Heigth Ratio (L/H) = 0.7

Soil Properties

Retained Fill

Friction Angle		30	
Cohesion	c =	0	lbs./sq.ft
Unit Weight	γ =	120	lbs/cu.ft
	Ka =	0.33	

Reinforced Zone

Friction Angle	φ =	34 degrees
Cohesion	c =	0 lbs./sq.ft
Unit Weight	$\gamma = $	125 lbs/cu.ft

Natural Soil

Friction Angle	φ =	Q	degrees
Sliding Cohesion	c =	1000	lbs./sq.ft
Bearing Cohesion	CB =	1500	lbs./sq.ft
Unit Weight	γ =	120	lbs/cu.ft

Calculated Forces

$V_1 =$	89600 lbs/ft	F _R =	20480 lbs/ft
$V_2 =$	0 lbs/ft	F _H =	20480 lbs/ft
Vs=	1493 lbs/ft	Fv =	0 lbs/ft
		Fs =	2133 lbs/ft
		y ₁ =	11.2 ft
$\chi_2 =$	3.7 ft	y ₂ =	14.9 ft
х н =	10.7 ft	ун =	10.7 ft
$x_V =$	11.2 ft	y _V =	22.4 ft
xs =	16.0 ft	vs =	16.0 ft

Eccentricity

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + F_V}$$

Overturning

F.S. =
$$\frac{(V_1 * y_1) + (V_2 * y_2) + (F_V * y_V)}{(F_H * y_H) + (F_S * y_S)}$$

Sliding

F.S. =
$$\frac{(V_1 + V_2 + F_V) * \tan \phi + c * L}{F_H + F_S}$$

F.S. = 1.0 must be at least 1.5

Bearing Capacity

$$F.S. = \frac{Gult}{GV}$$

General Shear

$$e = \frac{(F_H * X_H) + (F_S * X_S) - (V_2 * X_2) - (F_V * X_V)}{V_1 + V_2 + V_S + F_V}$$

$$\sigma_{ult} = C_B * N_c + 0.5 * \gamma * (L - 2e) * N_{\gamma}$$

$$\sigma_v = \frac{V_1 + V_2 + V_S + F_V}{L - 2 * e}$$

 $\sigma_v = 5405 \text{ lbs./sq.ft}$

 $\sigma_{\text{eff}} = 3420$ based on F.S. = 2.5

$$=S = 16$$

F.S. = 1.6 must be at least 2.5

Local Shear

$$y_{RZ} * H = 4000$$
 lbs/sq.ft $3 * c = 3000$ lbs/sq.ft

** STABL6H ** by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: 04-12-07 3:09pm

Run By:

Shawn Marcum

Input Data Filename: C:I69MSE
Output Filename: C:I69MSE.OUT

Plotted Output Filename: C:I69MSE.PLT

PROBLEM DESCRIPTION

Proposed I-69 Project

Station 39+00 Line "S-2-A", Undrained

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 400.00 to Y values listed.

4 Top Boundaries 10 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	42.00	100.00	42.00	1
2	100.00	42.00	100.10	74.00	2
3	100.10	74.00	123.10	74.00	2
4	123.10	74.00	200.00	74.00	3
5	100.00	42.00	123.00	42.00	4
6	123.00	42.00	123.10	74.00	3
7	123.00	42.00	200.00	42.00	1
8	99.90	34.00	100.00	42.00	<u>4</u>
9	122.90	34.00	123.00	42.00	1
10	.00	34.00	200.00	34.00	5

ISOTROPIC SOIL PARAMETERS

5 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	115.0	115.0	1000.0	. 0	.00	.0	1
2	125.0	125.0	9999.0	41.0	.00	. 0	1
3	125.0	125.0	1000.0	. 0	.00	. 0	1
4	125.0	125.0	.0	34.0	.00	. 0	1
5	140.0	140.0	9999.0	41.0	.00	. 0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	42.00
2	200.00	42.00

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	100.10	200.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 20.00 ft.

and X = 99.90 ft.

Each Surface Terminates Between X = 123.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

**** ERROR - RC11 ****
>>200 attempts to generate failure surface have failed. Revise limitations

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 28 Coordinate Points

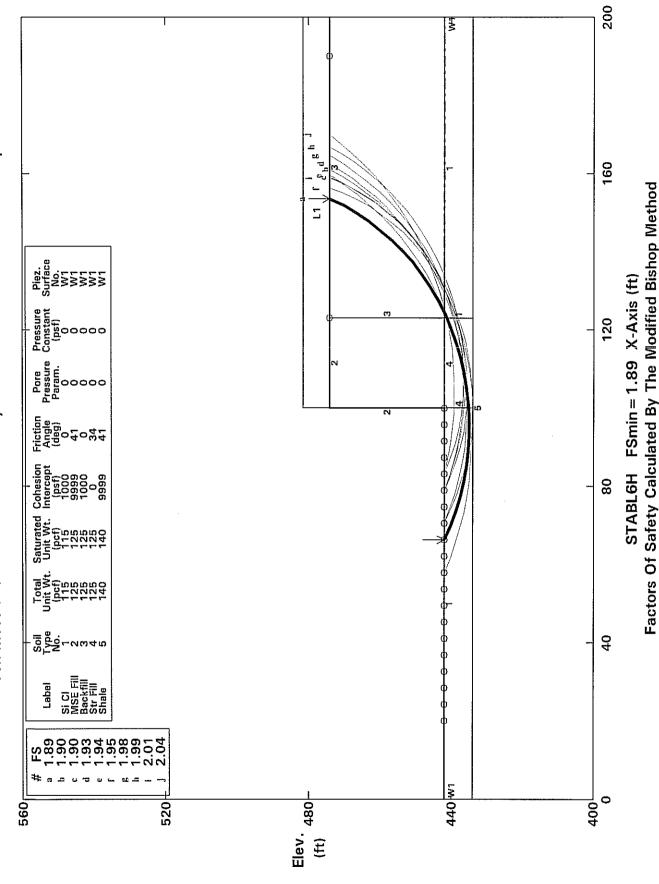
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	66.26	42.00
2	69.86	40.27
3	73.57	38.77
4	77.37	37.51
5	81.24	36.49
6	85.16	35.72
7	89.13	35.20
8	93.12	34.94
9	97.12	34.93
10	101.11	35.17
11	105.08	35.67
12	109.01	36.41
13	112.89	37.41
14	116.69	38.65
15	120.41	40.13
16	124.02	41.84
17	127.52	43.77
18	130.89	45.93
19	134.12	48.30
20	137.18	50.86
21	140.08	53.62
22	142.80	56.55
23	145.33	59.65
24	147.66	62.91
25	149.77	66.30
26	151.66	69.83
27	153.33	73.46
28	153.54	74.00

Circle Center At X = 95.3; Y = 97.8 and Radius, 62.9

*** 1.892 ***

Failure Surface Specified By 29 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1 2 3 4 5 6 7 8 9 0 1 1 1 2 1 3 1 4 5 6 7 1 1 1 2 1 3 1 4 5 1 6 7 1 8 1 2 1 2 1 2 2 3 4 5 2 3 2 3 4 5 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	66.26 69.85 73.53 77.30 81.14 85.04 88.98 96.96 100.95 108.95 108.95 112.85 116.74 120.56 124.31 127.97 131.54 134.99 138.32 141.56 147.45 150.18 152.73 155.10	42.00 40.23 38.36 36.32 35.36 34.05 34.05 34.30 35.47 39.66 44.48 46.71 54.48 46.71 57.39 63.69
27	157.28	67.04
28	159.27	70.52
29	160.99	74.00


Circle Center At X = 98.5; Y = 102.9 and Radius, 68.9

*** 1.895 ***

Failure Surface Specified By 28 Coordinate Points

Point X-Surf Y-Surf No. (ft) (ft)

Ten Most Critical. C:169MSE.PLT By: Shawn Marcum 04-12-07 3:09pm Proposed I-69 Project Station 39+00 Line "S-2-A", Undrained

** STABL6H ** by Purdue University

--Slope Stability Analysis-Simplified Janbu, Simplified Bishop
or Spencer`s Method of Slices

Run Date: 04-12-07 Time of Run: 3:10pm

Run By: Shawn Marcum
Input Data Filename: C:I69MSED
Output Filename: C:I69MSED.OUT
Plotted Output Filename: C:I69MSED.PLT

PROBLEM DESCRIPTION Proposed I-69 Project

Station 39+00 Line "S-2-A", Drained

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 400.00 to Y values listed.

4 Top Boundaries 10 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1 2	.00	42.00 42.00	100.00	42.00 74.00	1 2
3	100.10	74.00	123.10	74.00	2
4 5	123.10 100.00	74.00 42.00	200.00 123.00	74.00 42.00	3 4
6	123.00	42.00	123.10 200.00	74.00 42.00	3
7 8	123.00 99.90	42.00 34.00	100.00	42.00	<u> </u>
9 10	122.90 .00	34.00 34.00	123.00 200.00	42.00 34.00	1 5

ISOTROPIC SOIL PARAMETERS

5 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	115.0	115.0	40.0	28.0	.00	. 0	1
2	125.0	125.0	9999.0	41.0	.00	. 0	1
3	125.0	125.0	20.0	30.0	.00	. 0	1
4	125.0	125.0	. 0	34.0	.00	. 0	1
5	140.0	140.0	9999.0	41.0	.00	. 0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	42.00
2	200.00	42.00

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	100.10	200.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 20.00 ft. and X = 99.90 ft.

Each Surface Terminates Between X = 123.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

**** ERROR - RC11 ****
>>200 attempts to generate failure surface have failed. Revise limitations

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 28 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 4 5 6 7 8 9 0 1 1 2 3 1 4 5 1 6 7 1 2 1 2 2 3 2 3 2 3 4 5 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	66.26 69.86 73.57 77.37 81.24 85.16 89.13 93.12 97.12 101.11 105.08 109.01 112.89 116.69 120.41 124.02 127.52 130.89 134.12 137.18 140.08 142.80 145.33 147.66 149.77 151.66	42.00 40.27 38.77 36.49 35.70 34.93 35.64 34.93 35.64 37.41 38.35 41.87 45.36 41.87 45.36 56.55 59.66 69.83
27	153.33	73.46
28	153.54	74.00

Circle Center At X = 95.3; Y = 97.8 and Radius, 62.9

*** 1.561 ***

Failure Surface Specified By 31 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 6 17 18 9 0 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	57.85 61.50 65.23 69.08 76.79 80.73 84.70 92.70 100.68 104.64 108.57 112.45 116.27 120.03 123.72 130.83 134.53 140.75 143.75 1443.75 145.45 146.42 152.03 154.47	42.36.060 42.37.660 438.660 355.663 34.384.19 34.34.34.34 34.35.13 34.34.34 34.34.35 37.38 391.28 49
30	158.89	72.79
31	159.56	74.00

Circle Center At X = 91.6; Y = 112.4 and Radius, 78.1

*** 1.594 ***

Failure Surface Specified By 29 Coordinate Points

Point X-Surf Y-Surf

Ten Most Critical. C:169MSED.PLT By: Shawn Marcum 04-12-07 3:10pm Proposed I-69 Project Station 39+00 Line "S-2-A", Drained

Factors Of Safety Calculated By The Modified Bishop Method

** STABL6H ** by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Run Date. Time of Run:

04-12-07 3:10pm

Run By:

Shawn Marcum

Input Data Filename: C:I69MSEE
Output Filename: C:I69MSEE.

C:I69MSEE.OUT

Plotted Output Filename: C:I69MSEE.PLT

PROBLEM DESCRIPTION

Proposed I-69 Project

Station 39+00 Line "S-2-A", Earthquake

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 400.00 to Y values listed.

4 Top Boundaries 10 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	42.00	100.00	42.00	1
2	100.00	42.00	100.10	74.00	2
3	100.10	74.00	123.10	74.00	2
4	123.10	74.00	200.00	74.00	3
5	100.00	42.00	123.00	42.00	4
6	123.00	42.00	123.10	74.00	3
7	123.00	42.00	200.00	42.00	1
8	99.90	34.00	100.00	42.00	4
9	122.90	34.00	123.00	42.00	1
10	.00	34.00	200.00	34.00	5

ISOTROPIC SOIL PARAMETERS

5 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	115.0	115.0	1000.0	.0	.00	. 0	1
2	125.0	125.0	9999.0	41.0	.00	. 0	1
3	125.0	125.0	1000.0	.0	.00	. 0	1
4	125.0	125.0	. 0	34.0	.00	. 0	1
5	140.0	140.0	9999.0	41.0	.00	. 0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	42.00
2	200.00	42.00

BOUNDARY LOAD (S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	100.10	200.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .100 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned

Cavitation Pressure = .0 psf

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

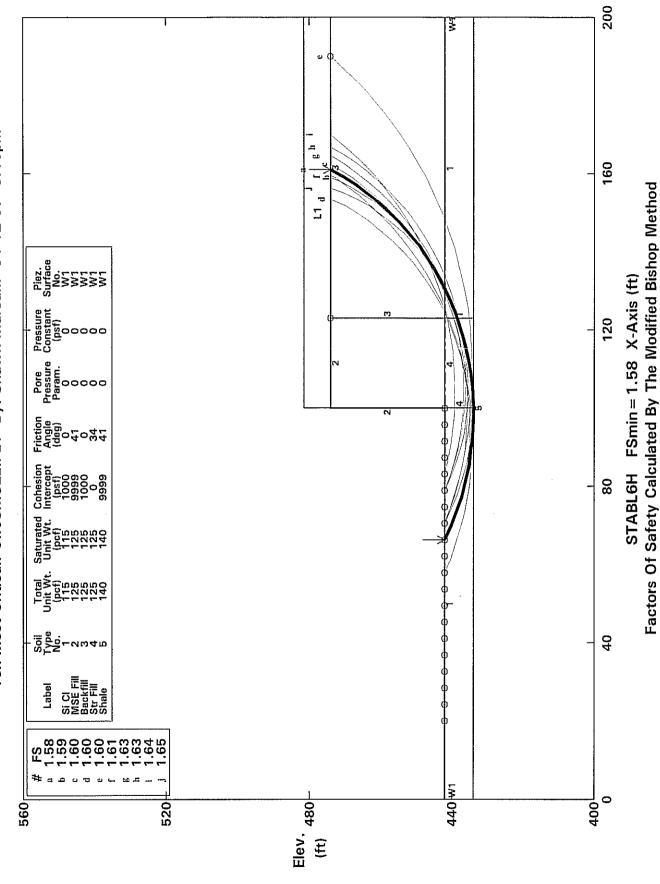
400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 20.00 ft. and X = 99.90 ft.

Each Surface Terminates Between X = 123.00 ft. and X = 190.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.


**** ERROR - RC11 ****
>>200 attempts to generate failure surface have failed. Revise limitations

The Factor Of Safety For The Trial Failure Surface Defined By The Coordinates Listed Below Is Misleading.

Failure Surface Defined By 32 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	99.90 100.00 101.77 105.07 108.52 112.12 115.83 119.63 123.52 127.46 131.45 135.45 135.45 135.45 135.45 135.45	42.00 39.17 36.80 34.54 32.53 30.77 29.27 28.05 27.10 26.44 26.97 26.66 25.97 26.66 27.44 28.49 29.82 31.42
19	162.17	33.28
20	165.57	35.40
21	168.81	37.75

Ten Most Critical, C:169MSEE.PLT By: Shawn Marcum 04-12-07 3:10pm Proposed I-69 Project Station 39 + 00 Line "S-2-A", Earthquake

APPENDIX F

BEARING CAPACITY CALCULATIONS

		IENT AMERICAS	· Structurepoint
PROJECT Proposed	I-69	Project	

Bridge Structure No. 1

PROJECT 1	NUMBER .	<u> 56</u>	. OO	<u> 181</u>	<u>,0/</u>	<u>87 </u>
SHEET	/_		_ OF _		1	
DATE	4	/5	107			
COMPUTE	D BY	5M	L			

Bridge Structure No. 1 (Nobles Chapel Road over I-69) Station 37+60 Line "5-2-A-PR"

Boring No	Auger Refisal	Elevation
TB-1-5	436.4 437.0	⇒ 436
TB-2-5	427.7	⇒ 427
TB-3 TB-3-5	419.0 412.8	=> 413

Recommend driving steel H-piles to bearing in the shale bedrock. Use HP 12 x 53 piles for 70 ten/pile and HP 12 x 74 piles for 100 ten/pile.

Alternatively, spread footings that bear at a depth of at least 2 ft into competent bedrock can be designed for an allowable bearing pressure of 8,000 lbs/At2

CUENT American Structurepoint

PROJECT Proposed I-69 Project

Nobles Chapel Road over I-69

Doundrag Calculations

East end-bent (TB-3)

39+00 Line "S-2-A-PR"

Profile Grade at El 474

Assume top-of-pile at

El 470

Surface area = 5 = 4 ft

Bedrock

Adhesim = a
$$a_F = a_{SCL} = \propto C = (0.55)(1.000 | b| A^2) = 550 | b| A^2$$

 $a_{SC} = (0.55)(1.500 | b| A^2) = 825 | b| A^2$

Downdrag = a L 5 = (550 b/H2)(470-445 ft)(4ft)+(825 b)(445-441 ft)(4ft)+(550 b/H2)(441-434)(4f) = 83,600 lbs = 42 tons

CVATC

CLIENT AMERICAN Structurepoint

PROJECT Proposed I-69 Project

SR 68 Bridge over I-69

Structure No. 4 - SR 68 over I-69 Station Z46 + 63 Line D

Boring No.	Auger Refusal Elevation
TB-4-5	380.1 377.8 → 377
TB-5 TB-5-5	383,6 => 384 390,6
TB-6-5	390.2 392.5 => 390
TG-7-5	390.7 => 391 391,2

Recommend driving steel H-piles to bearing in the bedrock. Use HP 12×53 piles for 70 ton piles and HP 12×74 piles for 100 ton piles

	PROJEC	CLIENT AMERICAN Troposed Traterstate 69 Proje SR 68 Bridge over I-69		cturepoint	PROJECT NUMBER 86.00481.0181 SHEET OF DATE 5 1167 COMPUTED BY 5M CHECKED BY Ton 5.
	·	Doundrag Calculations	<u></u>	- E	ast end-beut (TB-7)
ΕI	438 -	Profile Grade	ΕI	442	248+00 Line "D" Profile Grade
μ,		Fill $C = 1,000 \frac{165}{A^2}$ $\alpha = 0.55$			Assume top-of-pile at E1 438
	41'	Silty Clay / Silty Clay Loan	El	415	L= 41 Ft
		C=1,000 165/A2 0x=0.55	E)	317	Surface area = 5 = 4ft For HP 12 x 53 and 12 x 74 piles
	••••	Bedrock	<i>_</i> (, , , , , , , , , , , , , , , , , , , ,

Adhesion =
$$a = ac = (0.55)(1,000 | lpt^2) = 550 | lpt^2$$

Downdrag = $a \perp S = (550 | lpt^2)(41 pt)(4 pt) = 90,200 | lps$
= 45 tans/pile Where $L = Length$ of pile $S = Surface Area (Bax Area'')$ of pile/ft.

CLIENT American Structurepoint

PROJECT Proposed I-69 Project

Structure No. 2

Pre-cast Three-sided Reinforced Concrete Culvert

Structure No. 2 350 ft by 20 ft by 5.5 ft

Station 1561 + 83 Line "A", Boring Nos. TB-8 and TB-9

- Assume that all soil will be removed such that the footings will bear on compentent bedrock encountered in the borings below about E1 410.5 with a minimum footing width of 3 ft

Recommend using an allowable bearing pressure of 8,000 165/9, Ft provided that all soils are removed at the footing locations and that the footings will bear on competent bedrock

CHENT American Structurepoint

PROJECT Proposed I-69 Project

Structure No. 3 (Des. No. 0600798)

PROJECT NUMBER 86.	0048	31,0181
SHEET	OF	2
DATE 3 5 07		
COMPUTED BY 5W		

Pre-cast Three-sided Reinforced Concrete Culvert
Structure No. 3, 255 ft by 32 ft by 9 ft
Station 1590 + 11 Line "A", Boring Nos. TB-10 and TB-11

- Assumed footing bearing elevation at about E1 400
- De to the presence of soft silty clay encountered in Boring No. TB-10 between about El 398 and El 392, it is recommended that all soil be removed below the footings and that the footings bear on flowable backfill (in accordance with INDOT Standard Specifications Section 213) placed above the bedrock to reestablish the footing bearing elevation.
- Use $S_{c} = 40 \, lb/m^{2}$ (in accordance with INDOT Standard Specifications Section 213.04) $S_{c} = 40 \, lbs/m^{2}$ (144 m²/ f_{12}) = 5,760 lbs/f_{12} $C = \frac{1}{2}S = \frac{1}{2}(5,760 \, lb/f_{12}) = 2,880 \, lbs/f_{12}$ $Q_{ut} = 5.7(2880 \, lbs/f_{12}) = 16,400 \, lb/f_{12}$ $Q_{ut} = \frac{16,400}{2} \, lb/f_{12} = 5,460 \, lb/f_{12}$ $\Rightarrow 5,000 \, lbs/f_{12}$

CLIENT AMERICAN Structurepoint	PROJECT NUM
PROJECT Proposed I-69 Project	DATE
	COMPUTED BY
	CHECKED BY _

PROJECT 1	NUMBER	8	.0048	1.0181	
SHEET	2		OF	2	
DATE	3 \	5	07		
COMPUTE	D BY				

Recommend using an allowable bearing pressure of 5,000 165/A2 for footings that bear on flowable backfill placed over bedrock after all soils hove been removed

CLIENT American Structurepoint

PROJECT Proposed I-69 Project

Structure No. 5 (Des No. 0600797) CHECKED BY

PROJECT NUMBER <u>86-00481. 0181</u>
SHEET OF
DATE 4/5/07
COMPUTED BY

Pre-cast Three-sided Reinforced Concrete Culvert

Structure No. 5

Station 16+45 Ramp "B", Boring Nos. TB-12 and TB-13

- Assume footing bearing elevation at or below El 400 such that the footings will bear on medium stiff to very stiff silty day and silty day loan

Use
$$C = 1,500^{-105}|A^{2} \quad \Phi = 0 \quad N_{c} = 5.7 \quad F.S. = 3$$

$$Q = CN_{c} = (1,500^{-104})(5.7) = 8,550^{-105}|A^{2}|$$

$$Q_{ull} = \frac{q_{ull}}{F.S.} = \frac{8,550^{-115}|A^{2}|}{3} = 2,850^{-105}|A^{2}| \Rightarrow 2,800^{-105}$$

Recommend using an allowable bearing pressure of 2,800 lbs/ft2 provided that any soft soils are removed and that the factings bear on medium stiff to very stiff silty clay or silty clay loam

PROJECT NUMBER <u>86</u>	.00481	.0181
SHEET	OF	
DATE 4/5	07	
COMPUTED BY 5W	1	
CHECKED BY		

Pre-cast Concrete Arch Culvert - Station 8+92 Ramp "C" Borry Nos. TB-14 and TB-15

- Assume bearing elevation at about El 406
- Assume that all very soft and soft soils are removed such that the footings will bear in the medium stiff silty clay encountered in the test borings below about E1 405 or on structure backfill placed over the medium stiff silty clay

Use:

$$C = 1,000 \frac{lbs}{A^2}$$
 $\phi = 0$ $N_c = 5.7$
 $Q_{ult} = cN_c = (1,000 \frac{lbs}{A^2})(5.7) = 5,700 \frac{lb}{59.9}$
 $Q_{all} = \frac{q_{ult}}{3} = \frac{5,700}{3} \frac{lb}{59.9} = 1,900 \frac{lb}{A^2}$

Recommend using an allowable bearing pressure of 1,900 16/42 provided that all soft soils are removed at the base of the footing excanations and that the footings will bear on firm material

CLIENT American Structurepoint

PROJECT NUMBER <u>86.00481.0181</u>
SHEET OF
DATE 4/5/07
COMPUTED BY SW
CHECKED BY

Pre-cast Concrete Arch Culvert - Station 14+05 Ramp "A-1" Boring Nos. TB-25 and TB-26

- Assume that all soil will be removed such that the footings will bear on competent bedrack encountered in the borings below about E1441 to 442 with a minimum footing width of 3 ft

Recommend using an allowable bearing pressure of 8,000 16/142 provided that all soils are removed at the footing locations and that the footings will bear on competent bedrack.

APPENDIX G

STABL6H SLOPE STABILITY OUTPUT

** STABL6H ** by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: 04-10-07 Time of Run: 11:14am

Input Data Filename: C:I69D OUT Plotted Output File Plotted Output Filename: C:I69D.PLT

Proposed I-69 Project PROBLEM DESCRIPTION

Station 244+50 Line "D" - Undrained Cond

3H to IV Slope

BOUNDARY COORDINATES

NOTE: User defined origin was specified. Add 00.00 to X values and 350.00 to Y values listed.

6 Top Boundaries 10 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	55.00	100.00	55.00	1
2	100.00	55.00	199.00	88.00	2
3	199.00	88.00	218.00	92.00	2
4	218.00	92.00	262.00	92.00	2
5	262.00	92.00	281.00	88.00	2
6	281.00	88.00	350.00	65.00	2
7	100.00	55.00	184.00	65.00	1
8	184.00	65.00	350.00	65.00	1
9	.00	52.00	350.00	52.00	3
10	.00	30.00	350.00	30.00	4

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1 2 3 4	115.0 120.0 110.0 140.0	115.0 120.0 110.0 140.0	1000.0 1000.0 500.0 8000.0	.0 .0 .0	.00 .00 .00 .00	. 0 . 0 . 0	1 1 1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 4 Coordinate Points

Point No.	X-Water (ft)	Y-Water (ft)
1 2	.00	55.00
2	100.00	55.00
3	184.00	60.00
4	350.00	60.00

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1.	218.00	262.00	200.0	.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 50.00 ft. and X = 130.00 ft.

```
Each Surface Terminates Between X = 150.00 ft. and X = 300.00 ft.
```

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

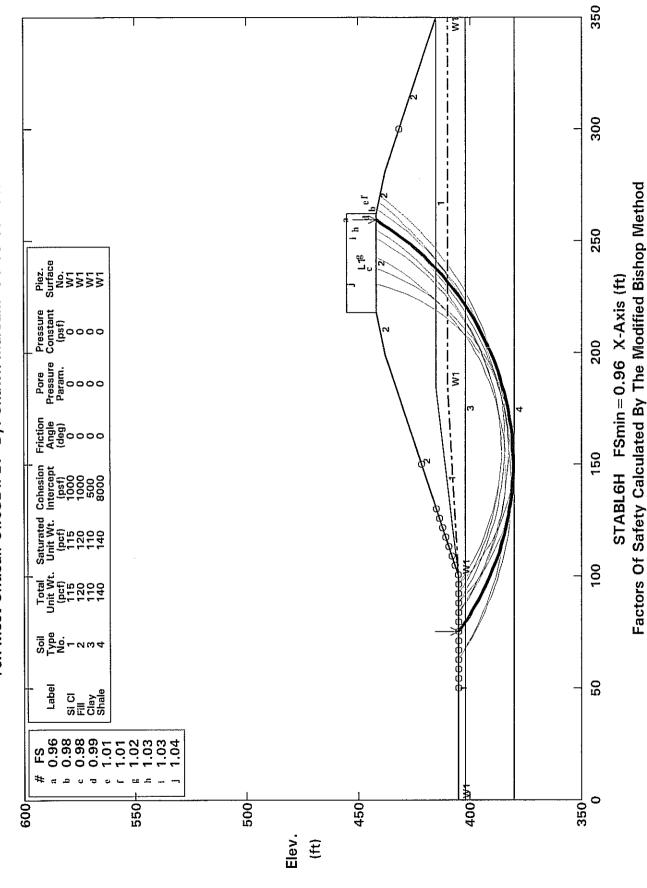
4.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 54 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	75.26 78.54 81.88 85.30 88.77 92.31 95.90 99.55 103.24 106.98 110.77 114.59 118.45 122.34 126.25 130.19 134.15 138.13 142.12 146.11 150.11 154.11 158.11 162.07 170.03 173.97	(ft) 55.70 50.71 48.44 44.57 42.81 439.23 35.70 332.69 31.62 331.62 31.62 31.62 31.62 31.62 31.62 31.62 31.62 31.62 31.62 31.62 31.62 31.63
28 29 30 31	177.89 181.78 185.64 189.47	34.63 35.68 36.85


```
32
            193.26
                         38.14
                         39.54
            197.00
  33
                         41.07
            200.70
  34
  35
            204.35
                         42.70
            207.95
                         44.45
  36
                         46.32
  37
            211.49
            214.96
                         48.29
  38
                         50.37
            218.38
  39
            221.73
                         52.56
  40
                         54.85
            225.01
  41
                         57.24
            228.22
  42
                         59.73
  43
            231.34
                         62.32
  44
            234.39
            237.36
                         65.00
  45
                         67.78
  46
            240.24
            243.04
                         70.64
  47
                         73.59
  48
            245.74
                         76.62
  49
            248.35
                         79.73
  50
            250.86
            253.28
                         82.92
  51
                         86.19
  52
            255.59
            257.80
                         89.52
  53
            259.33
                         92.00
  54
Circle Center At X = 150.2; Y = 158.4 and Radius, 127.7
```

*** .960 ***

Failure Surface Specified By 53 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	(ft) 83.68 87.04 90.45 93.93 97.47 101.06 104.71 108.41 112.15 115.93 119.76 123.61 127.50 131.42 135.35 139.31 143.29 147.27 151.27	(ft) 55.00 52.81 50.73 48.76 46.90 45.14 43.50 41.97 40.56 39.26 38.02 36.08 37.08 37.08 37.08 37.08 37.08 37.08 37.08 37.08
20	155.27	32.92
21	159.27	32.96

Proposed I-69 Project Station 244 + 50 Line "D" - Undrained Cond Ten Most Critical. C:169D.PLT By: Shawn Marcum 04-10-07 11:14am

** STABL6H ** by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Nun By:
Input Data Filename:
Output Filename:
Plotted Output Filename:
C:I69DE
C:T69DE

Proposed I-69 Project PROBLEM DESCRIPTION Station 244+50 Line "D" - Earthquake

34 to IV slope

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 350.00 to Y values listed.

6 Top Boundaries 10 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd	
1 2	.00 100.00	55.00 55.00	100.00 199.00	55.00 88.00	1 2	
3	199.00	88.00	218.00	92.00	2	
4	218.00	92.00	262.00	92.00	2	
5	262.00	92.00	281.00	88.00	2	
6	281.00	88.00	350.00	65.00	2	
7	100.00	55.00	184.00	65.00	1	
8	184.00	65.00	350.00	65.00	1	
9	.00	52.00	350.00	52.00	3	
10	.00	30.00	350.00	30.00	4	

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.	
1	115.0	115.0	1000.0	. 0	.00	. 0	1	
2	120.0	120.0	1000.0	. 0	.00	.0	1	
3	110.0	110.0	500.0	. 0	.00	. 0	1	
4	140.0	140.0	8000.0	. 0	.00	. 0	1	

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 4 Coordinate Points

Point No.	X-Water (ft)	Y-Water (ft)	
1	.00	55.00	
2	100.00	55.00	
3	184.00	60.00	
4	350.00	60.00	
			

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	218.00	262.00	200.0	.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .100 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned

Cavitation Pressure = .0 psf

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 50.00 ft.

and X = 130.00 ft.

Each Surface Terminates Between X = 150.00 ft. and X = 300.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

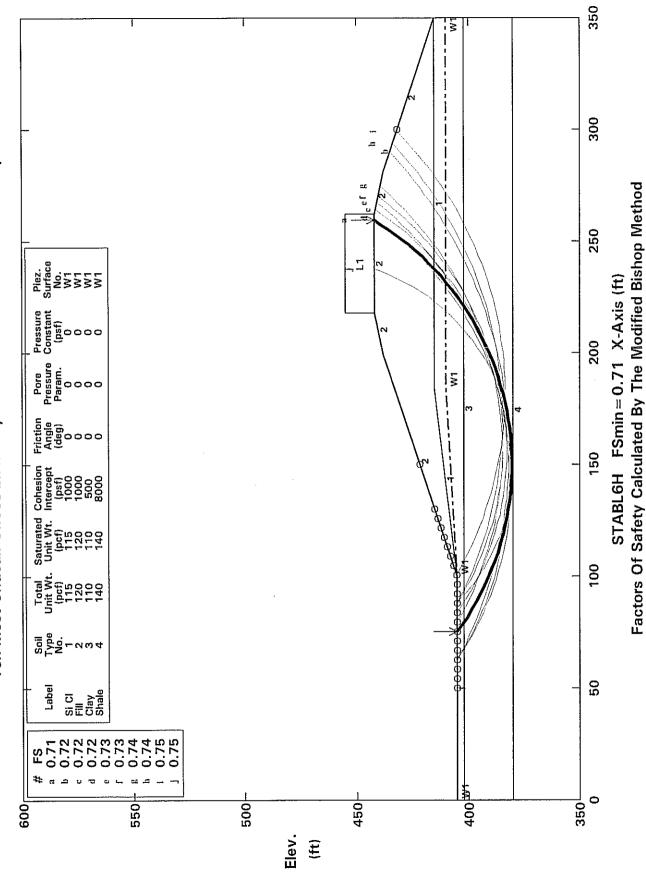
4.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 54 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
	•	
1	75.26	55.00
2	78.54	52.70
3	81.88	50.51
4	85.30	48.42
5	88.77	46.44
6	92.31	44.57
7	95.90	42.81
8	99.55	41.17
9	103.24	39.64
10	106.98	38.22
11	110.77	36.93
12	114.59	35.75
13	118.45	34.70
14	122.34	33.76
15	126.25	32.95
16	130.19	32.26
17	134.15	31.69
18	138.13	31.25
19	142.12	30.93
20	146.11	30.74
21	150.11	30.68


0.0	7 FA 11	30 73			
22	154.11	30.73			
23	158.11	30.92			
24	162.10	31.23			
25	166.07	31.66			
26	170.03	32.22			
27	173.97	32.90			
28	177.89	33.70			
29	181.78	34.63			
30	185.64	35.68			
31	189.47	36.85			
32	193.26	38.14			
33	197.00	39.54			
34	200.70	41.07			
35	204.35	42.70			
36	207.95	44.45			
37	211.49	46.32			
38	214.96	48.29			
39	218.38	50.37			
40	221.73	52.56			
41	225.01	54.85			
42	228.22	57.24			
43	231.34	59.73			
44	234.39	62.32			
45	237.36	65.00			
46	240.24	67.78			
47	243.04	70.64			
48	245.74	73.59			
49	248.35	76.62			
50	250.86	79.73			
51	253.28	82.92			
52	255.59	86.19			
53	257.80	89.52			
54	259.33	92.00			
Circle Cen	iter At X =	150.2 ; Y =	158.4	and Radius,	127.7

Failure Surface Specified By 63 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	62.63	55.00
2	66.18	53.16
3	69.77	51.40
4	73.40	49.70
5	77.06	48.09
б	80.75	46.54
7	84.47	45.07
8	88.22	43.68
9	91.99	42.36
10	95.80	41.12
11	99.62	39.96

*** .706 ***

Ten Most Critical. C:169DE.PLT By: Shawn Marcum 04-10-07 2:38pm Proposed I-69 Project Station 244 + 50 Line "D" - Earthquake

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: 04-10-07 Time of Run: 11:07am

Run By: Shawn Marcum
Input Data Filename: C:I69D5
Output Filename: C:I69D5.OUT Plotted Output Filename: C:I69D5.PLT

Proposed I-69 Project PROBLEM DESCRIPTION

Station 244+50 Line "D" - Undrained Cond

5H to IV Slope

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 350.00 to Y values listed.

6 Top Boundaries 10 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	55.00	134.00	55.00	1
2	134.00	55.00	299.00	88.00	2
3	299.00	88.00	318.00	92.00	2
4	318.00	92.00	362.00	92.00	2
5	362.00	92.00	381.00	88.00	2
6	381.00	88.00	496.00	65.00	2
7	134.00	55.00	284.00	65.00	1
8	284.00	65.00	496.00	65.00	1
9	.00	52.00	496.00	52.00	3
10	.00	30.00	496.00	30.00	4

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1	115.0	115.0	1000.0	.0	.00	.0	1
2	120.0	120.0	1000.0	. 0	.00	.0	1
3	110.0	110.0	500.0	. 0	.00	. 0	1
4	140.0	140.0	8000.0	. 0	.00	. 0	1

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 4 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	55.00
2	200.00	55.00
3	284.00	60.00
4	496.00	60.00

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	318.00	362.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 50.00 ft. and X = 230.00 ft.

```
Each Surface Terminates Between X = 250.00 ft. and X = 400.00 ft.
```

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

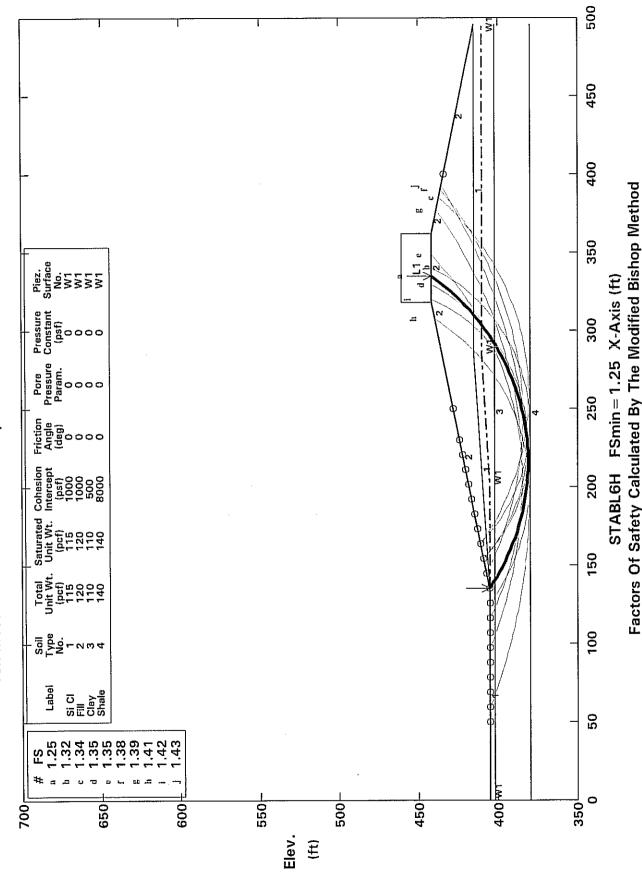
Following Are Displayed The Ten Most Critical Of The Trial

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 58 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
28	238.44	32.83
29	242.39	33.50
30	246.31	34.27
31	250.21	35.15


32	254.09	36.14			
33	257.94	37.23			
34	261.75	38.43			
35	265.54	39.73			
36	269.28	41.13			
37	272.99	42.63			
38	276.65	44.24			
39	280.27	45.94			
40	283.85	47.74			
41	287.37	49.64			
42	290.83	51.63			
43	294.25	53.72			
44	297.60	55.90			
45	300.90	58.17			
46	304.13	60.52			
47	307.29	62.97			
48	310.39	65.50			
49	313.42	68.11			
50	316.37	70.81			
51	319.25	73.59			
52	322.06	76.44			
53	324.78	79.37			
54	327.43	82.37			
55	329.99	85.44			
56	332.47	88.58			
57	334.86	91.79			
58	335.01	92.00			
rcle	Center At X =	215.9 ; Y =	177.9	and Radius,	146.8

*** 1.247 ***

Failure Surface Specified By 54 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	163.68	60.94
2	166.63	58.23
3	169.66	55.62
4	172.79	53.13
5	176.01	50.75
6	179.31	48.49
7	182.69	46.35
8	186.14	44.33
9	189.66	42.44
10	193.25	40.67
11	196.90	39.04
12	200.61	37.54
13	204.37	36.17
14	208.18	34.94
15	212.02	33.84
16	215.91	32.89
17	219.82	32.07

Proposed I-69 Project Station 244 + 50 Line "D" - Undrained Cond Ten Most Critical. C:169D5.PLT By: Shawn Marcum 04-10-07 11:07am

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop

or Spencer's Method of Slices

Run Date: 04-10-07 Time of Run: 11:17am

Run By: Shawn Marcum Input Data Filename: C:169E5
Output Filename: C:169E5.OUT Plotted Output Filename: C:I69E5.PLT

Proposed I-69 Project PROBLEM DESCRIPTION

Station 244+50 Line "D" - Earthquake Con

5H to IV Slope

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 350.00 to Y values listed.

6 Top Boundaries 10 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	55.00	134.00	55.00	1
2	134.00	55.00	299.00	88.00	2
3	299.00	88.00	318.00	92.00	2
4	318.00	92.00	362.00	92.00	2
5	362.00	92.00	381.00	88.00	2
6	381.00	88.00	496.00	65.00	2
7	134.00	55.00	284.00	65.00	1
8	284.00	65.00	496.00	65.00	1
9	.00	52.00	496.00	52.00	3
10	.00	30.00	496.00	30.00	4

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface

No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
1 2 3 4	115.0 120.0 110.0 140.0	115.0 120.0 110.0 140.0	1000.0 1000.0 500.0 8000.0	.0 .0 .0	.00 .00 .00	.0.0.0	1 1 1

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 4 Coordinate Points

Point No.	X-Water (ft)	Y-Water (ft)	
1	.00	55.00	
2	200.00	55.00	
3	284.00	60.00	
4	496.00	60.00	

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	318.00	362.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .100 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned

Cavitation Pressure = .0 psf

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 50.00 ft.

and X = 230.00 ft.

Each Surface Terminates Between X = 250.00 ft. and X = 400.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

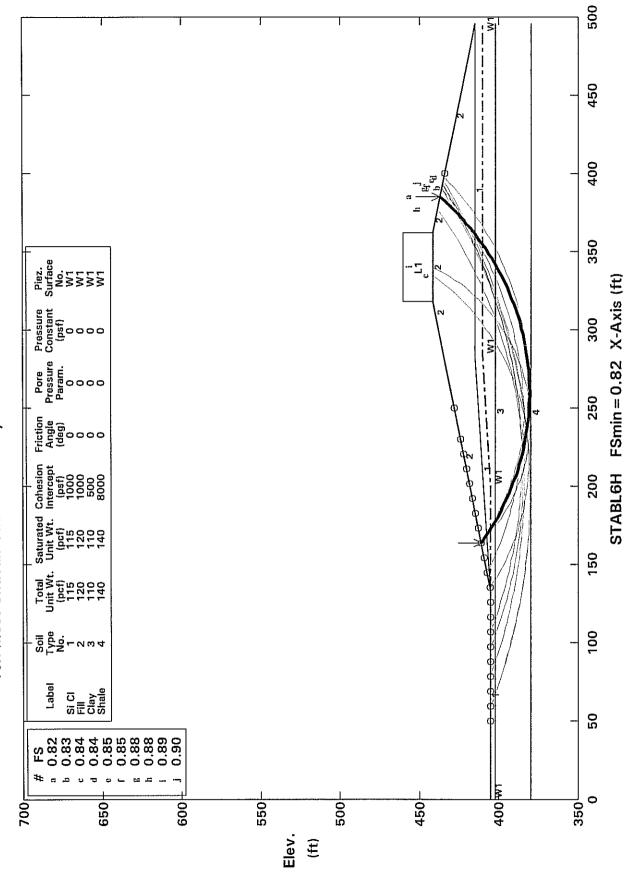
4.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 63 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	163.68	60.94
2	166.99	58.68
3	170.34	56.50
4	173.75	54.40
5	177.20	52.39
6	180.70	50.45
7	184.25	48.60
8	187.84	46.84
9	191.47	45.17
10	195.14	43.58
11	198.85	42.08
12	202.59	40.66
13	206.37	39.34
14	210.18	38.11
15	214.01	36.97
16	217.87	35.93
17	221.75	34.97
18	225.66	34.11
19	229.59	33.34
20	233.53	32.67
21	237.49	32.09
		•


22 23 24 25 26 27 28 29 30 31 32 33	241.46 245.44 249.43 253.42 257.42 261.42 265.42 269.42 273.41 277.39 281.36 285.32	31.60 31.22 30.92 30.72 30.62 30.62 30.70 30.89 31.17 31.55 32.02			
33 34	289.27	33.24			
35	293.19	34.00			
36	297.10	34.85			
37	300.99	35.79			
38 39	304.85 308.69	36.82			
40	312.50	37.95 39.17			
41	316.28	40.48			
42	320.03	41.88			
43	323.74	43.36			
44	327.42	44.94			
45	331.06	46.61			
46	334.65	48.36			
47	338.21	50.19			
48 49	341.71 345.18	52.11 54.12			
50	348.59	56.20			
51	351.95	58.37			
52	355.26	60.62			
53	358.51	62.95			
54	361.71	65.35			
55	364.85	67.83			
56	367.93	70.38			
57 58	370.95 373.90	73.01 75.71			
59	376.79	78.48			
60	379.61	81.31			
61	382.36	84.21			
62	385.04	87.18			
63	385.05	87.19			
Circle C	enter At X = 25	59.7 ; Y =	197.7	and Radius,	167.1

Failure Surface Specified By 67 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	144.74	57.15
2	148.36	55.44

*** .818 ***

Proposed I-69 Project Station 244 + 50 Line "D" - Earthquake Con Ten Most Critical. C:169E5.PLT By: Shawn Marcum 04-10-07 11:17am

Factors Of Safety Calculated By The Modified Bishop Method

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: 04-10-07
Time of Run: 11:20am
Run By: Shawn Marcum
Input Data Filename: C:I69DB
Output Filename: C:I69DB.OUT

Plotted Output Filename: C:I69DB.PLT

Proposed I-69 Project PROBLEM DESCRIPTION

Station 244+50 Line "D" - Undrained Cond

34 to IV Slope with toe berm

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 350.00 to Y values listed.

8 Top Boundaries 13 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	55.00	50.00	55.00	1
2	50.00	55.00	65.00	65.00	2
3	65.00	65.00	130.00	65.00	2
4	130.00	65.00	199.00	88.00	2
5	199.00	88.00	218.00	92.00	2
6	218,00	92.00	262.00	92.00	2
7	262.00	92.00	281.00	88.00	2
8	281.00	88.00	350.00	65.00	2
9	50.00	55.00	100.00	55.00	1
10	100.00	55.00	184.00	65.00	1
11	184.00	65.00	350.00	65.00	1
12	.00	52.00	350.00	52.00	3
13	.00	30.00	350.00	30.00	4

ISOTROPIC SOIL PARAMETERS

			Cohesion Intercept (psf)	Angle	Pore Pressure Param.		
1	115.0	115.0	1000.0	. 0	.00	. 0	1
2	120.0	120.0	1000.0	. 0	.00	. 0	1
3	110.0	110.0	500.0	. 0	.00	. 0	1
4	140.0	140.0	8000.0	. 0	.00	. 0	1

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 4 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	55.00
2	100.00	55.00
3	184.00	60.00
4	350.00	60.00

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	218.00	262.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 50.00 ft.

Each Surface Terminates Between X = 150.00 ft. and X = 300.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

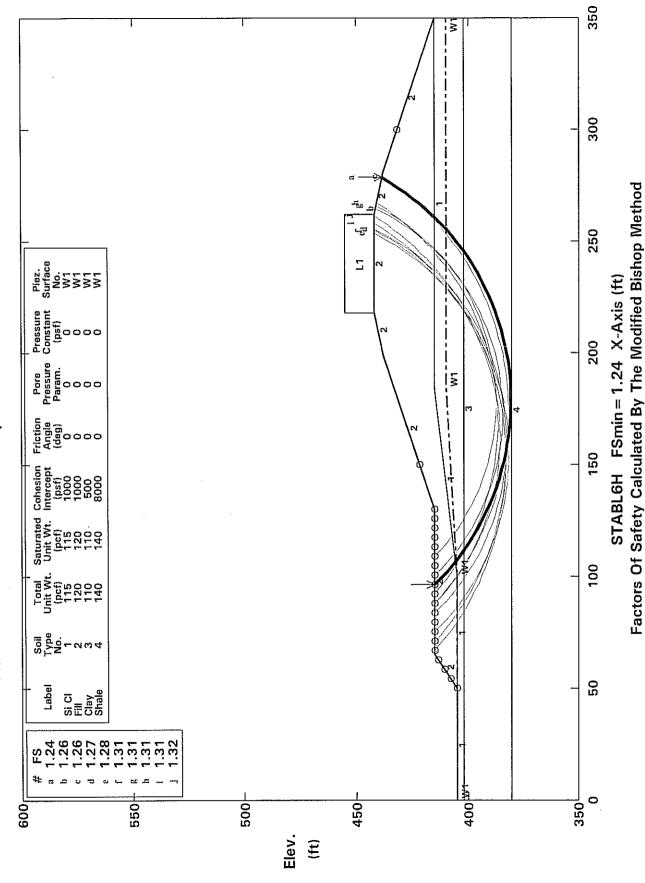
Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 55 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	(ft) 96.32 99.17 102.12 105.16 108.28 111.50 114.79 118.16 121.60 125.12 128.69 132.33 136.02 139.76 143.55 147.38 151.25 155.16 159.09 163.04 167.01 171.00 174.99	(ft) 65.20 59.49 56.89 54.40 52.75 47.56 43.64 41.88 38.23 31.64 37.90 31.79 31.77 31.77
24	178.99	30.52
25	182.99	30.61
26	186.99	30.83
27	190.97	31.19
28	194.94	31.69

29	198.89	32.33
30	202.81	33.11
31	206.71	34.02
32	210.57	35.07
33	214.39	36.25
34	218.17	37.56
35	221.90	39.00
36	225.58	40.57
37	229.20	42.27
38	232.76	44.09
39	236.26	46.03
40	239.68	48.10
41	243.04	50.28
42	246.31	52.57
43	249.50	54.98
44	252.61	57.50
45	255.63	60.13
46	258.55	62.86
47	261.38	65.68
48	264.11	68.61
49	266.74	71.63
50	269.26	74.73
51	271.67	77.93
52	273.96	81.20
53	276.15	84.55
54	278.21	87.98
55	278.51	88.52


Circle Center At X = 178.5; Y = 145.7 and Radius, 115.2

*** 1.240 ***

Failure Surface Specified By 50 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	100.53	65.00
2	103.37	62.19
3	106.32	59.48
4	109.37	56.90
5	112.53	54.44
6	115.78	52.11
7	119.12	49.91
8	122.54	47.84
9	126.04	45.90
10	129.62	44.11
11	133.26	42.46
12	136.96	40.95
13	140.73	39.59
14	144.54	38.38
15	148,40	37.32
16	152.29	36.42
17	156.22	35.66

Proposed I-69 Project Station 244 + 50 Line "D" - Undrained Cond Ten Most Critical. C:169DB.PLT By: Shawn Marcum 04-10-07 11:20am

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: 04-10-07 Time of Run: 5:06pm

Run By: Shawn Marcum

Input Data Filename: C:I69DBE
Output Filename: C:I69DBE. C:I69DBE.OUT Plotted Output Filename: C:I69DBE.PLT

PROBLEM DESCRIPTION Proposed I-69 Project

Station 244+50 Line "D" - Earthquake

3H to IV with too bern

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 350.00 to Y values listed.

8 Top Boundaries 13 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	55.00	50.00	55.00	1
2	50.00	55.00	65.00	65.00	1
3	65.00	65.00	130.00	65.00	1
4	130.00	65.00	199.00	88.00	2
5	199.00	88.00	218.00	92.00	2
6	218.00	92.00	262.00	92.00	2
7	262.00	92.00	281.00	88.00	2
8	281.00	88.00	350.00	65.00	2
9	50.00	55.00	100.00	55.00	1
10	100.00	55.00	184.00	65.00	1
11	184.00	65.00	350.00	65.00	1
12	.00	52.00	350.00	52.00	3
13	.00	30.00	350.00	30.00	4

ISOTROPIC SOIL PARAMETERS

	Unit Wt.	Unit Wt.	Cohesion Intercept (psf)	Angle	Pressure		Surface
1	115.0	115.0	1000.0	. 0	.00	. 0	1
2	120.0	120.0	1000.0	.0	.00	. 0	1
3	110.0	110.0	500.0	. 0	.00	. 0	1
4	140.0	140.0	8000.0	. 0	.00	. 0	1

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 4 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	55.00
2	100.00	55.00
3	184.00	60.00
4	350.00	60.00

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	218.00	262.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .100 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned

Cavitation Pressure = .0 psf

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 20.00 ft. and X = 130.00 ft.

Each Surface Terminates Between X = 150.00 ft. and X = 300.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

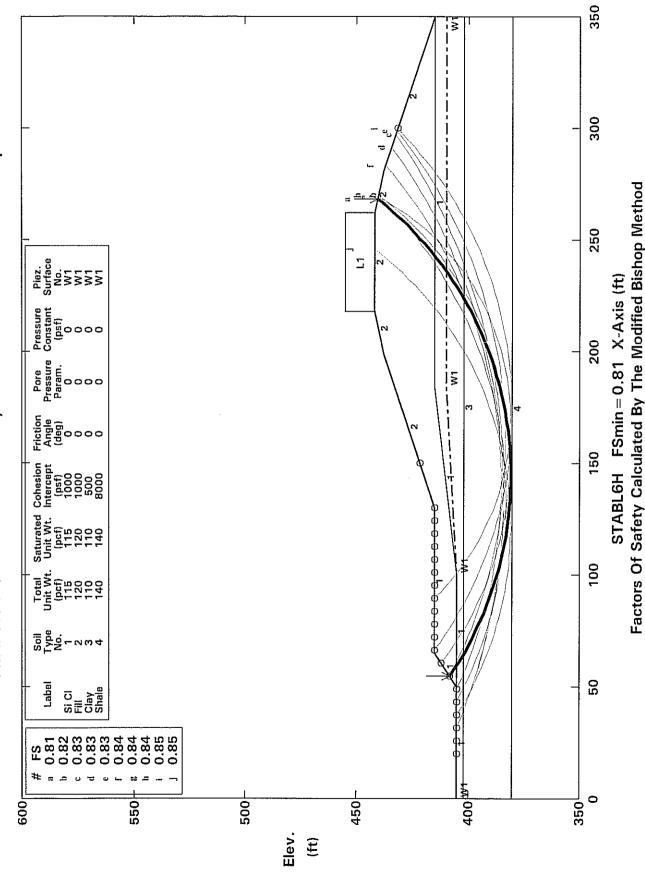
Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 61 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	54.74	58.16
2	58.07	55.95
3	61.47	53.83
4	64.91	51.80
5	68.40	49.85
6	71.95	47.99
7	75.53	46.22
8	79.16	44.54
9	82.84	42.96
10	86.55	41.46
11	90.29	40.06
12	94.08	38.76
13	97.89	37.55
14	101.73	36.44
15	105.60	35.42
16	109.49	34.50
17	113.41	33.69
18	117.34	32.96

```
19
              121.29
                            32.34
   20
              125.26
                            31.82
   21
              129.24
                            31.40
   22
              133.22
                            31.08
   23
              137.22
                            30.86
   24
              141.22
                            30.74
   25
              145.22
                            30.72
   26
              149.22
                            30.80
   27
              153.21
                            30.98
   28
              157.20
                            31.26
   29
              161.18
                            31.64
   30
              165.15
                            32.13
   31
              169.11
                            32.71
   32
              173.05
                            33.39
   33
              176.98
                            34.17
   34
              180.88
                            35.05
   35
              184.76
                            36.03
                            37.10
   36
              188.61
   37
              192.43
                            38.28
   38
                            39.54
              196.23
   39
              199.99
                            40.91
   40
              203.71
                            42.36
   41
              207.40
                            43.91
   42
              211.05
                            45.56
   43
              214.65
                            47.29
                            49.11
   44
              218.21
   45
              221.73
                            51.03
   46
              225.19
                            53.03
   47
              228.60
                            55.11
   48
              231.96
                            57.29
   49
              235.26
                            59.54
   50
              238.51
                            61.88
   51
                            64.30
              241.69
   52
              244.82
                            66.80
   53
              247.88
                            69.38
   54
              250.87
                            72.03
   55
              253.79
                            74.76
   56
              256.65
                            77.56
   57
              259.43
                            80.43
              262.15
   58
                            83.37
   59
              264.78
                            86.38
   60
              267.34
                            89.45
   61
              268.31
                            90.67
Circle Center At X = 144.0; Y = 189.6 and Radius,
```


158.9

*** .808 ***

Failure Surface Specified By 63 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	43.16	55.00

Ten Most Critical. C:169DBE.PLT By: Shawn Marcum 04-10-07 5:06pm Proposed I-69 Project Station 244 + 50 Line "D" - Earthquake

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: 04-10-07 Time of Run: 10:51am

Run By: Shawn Marcum
Input Data Filename: C:I69A
Output Filename: C:I69A.OUT Plotted Output Filename: C:I69A.PLT

PROBLEM DESCRIPTION Proposed I-69 Project

Station 247+50 Line "D" - Undrained Cond

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 340.00 to Y values listed.

6 Top Boundaries 8 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	72.00	100.00	72.00	1
2	100.00	72.00	189.00	99.00	2
3	189.00	99.00	208.00	102.00	2
4	208.00	102.00	252.00	102.00	2
5	252.00	102.00	271.00	99.00	2
6	271.00	99.00	353.00	72.00	2
7	100.00	72.00	353.00	72.00	1
8	.00	52.00	353.00	52.00	3

ISOTROPIC SOIL PARAMETERS

3 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No.

1	115.0	115.0	1000.0	.0	.00	.0	1
2	120.0	120.0	1000.0	.0	.00	.0	1
3	140.0	140.0	8000.0	. 0	.00	.0	1

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	70.00
2	353.00	70.00

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	210.00	250.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 50.00 ft. and X = 120.00 ft.

Each Surface Terminates Between X = 150.00 ft.and X = 260.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation

At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 41 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1 2 3 4 5 6 7 8 9 0 1 1 2 1 3 1 4 5 6 7 8 9 9 0 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	97.90 101.11 104.42 107.83 111.33 114.92 118.57 122.30 126.09 129.93 133.81 141.67 145.66 157.66 153.66 165.57 177.36 181.19 184.97 188.32 195.88 199.36 199.30 202.75 209.23 212.30 215.26	72.62.38 67.38 67.39 63.29 63.59 53.59 53.73 53.10 53.31 53.
35	220.81	83.60
36	223.38	86.66

```
      37
      225.82
      89.83

      38
      228.12
      93.11

      39
      230.26
      96.48

      40
      232.26
      99.95

      41
      233.32
      102.00
```


Circle Center At X = 153.2; Y = 143.1 and Radius, 90.1

*** 1.889 ***

Failure Surface Specified By 46 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
No. 12345678901123145678901234567890123345673333333333333333333333333333333333	79.47 82.85 93.31 96.35 96.35 1004.35 115.83 119.73 115.87 115.87 115.57 115.57 115.57 115.57 115.57 115.59 1167.59 1175.11 11	79.0015 10.
38	216.88	80.17
39	219.85	82.85

Proposed I-69 Project Station 247 + 50 Line "D" - Undrained Cond Ten Most Critical. C:169A.PLT By: Shawn Marcum 04-10-07 10:51am

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: 04-10-07 Time of Run:

Time of Run: 10:53am
Run By: Shawn Marcum
Input Data Filename: C:I69C
Output Filename: C:I69C.OUT Plotted Output Filename: C:I69C.PLT

PROBLEM DESCRIPTION Proposed I-69 Project Station 247+50 Line "D" - Drained Cond

BOUNDARY COORDINATES

NOTE: User defined origin was specified. Add 00.00 to X values and 340.00 to Y values listed.

6 Top Boundaries 8 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	72.00	100.00	72.00	1
2	100.00	72.00	189.00	99.00	2
3	189.00	99.00	208.00	102.00	2
4	208.00	102.00	252.00	102.00	2
5	252.00	102.00	271.00	99.00	2
6	271.00	99.00	353.00	72.00	2
7	100.00	72.00	353.00	72.00	1
8	.00	52.00	353.00	52.00	3

ISOTROPIC SOIL PARAMETERS

3 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (psf) (deg) Param. (psf) No.

1	115.0	115.0	40.0	28.0	.00	.0	1
2	120.0	120.0	40.0	28.0	.00	. 0	1
3	140.0	140.0	8000.0	. 0	.00	. 0	1

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	70.00
2	353.00	70.00

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No	(ft)	(ft)	(lb/sqft)	(deg)
1	210.00	250.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 50.00 ft. and X = 120.00 ft.

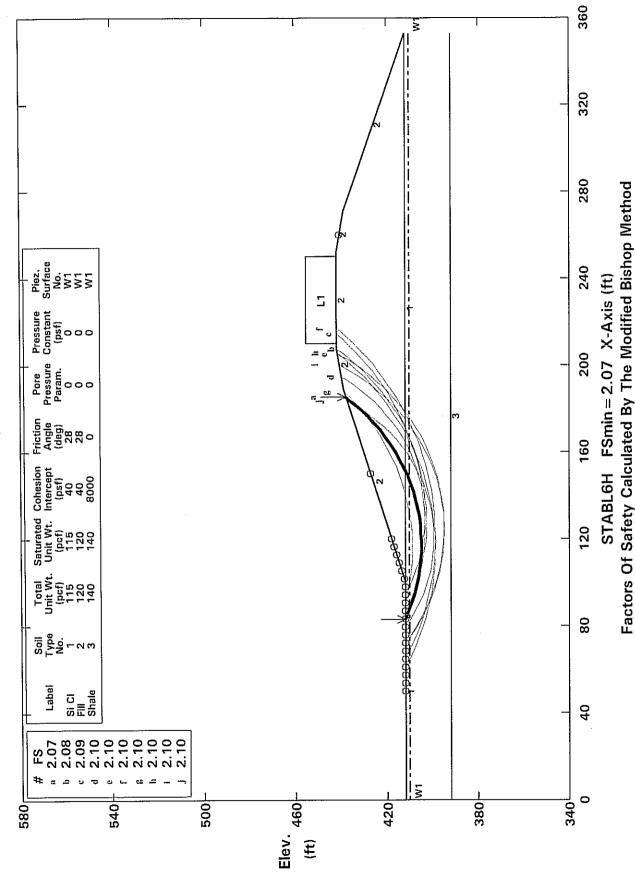
Each Surface Terminates Between X = 150.00 ft.and X = 260.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation

At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.


* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 30 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
NO 1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 4 5 6 7 8 9 1 1 2 1 3 1 4 5 6 7 1 8 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	83.16 86.87 90.64 94.48 98.36 102.28 106.23 110.21 114.20 122.20 126.19 130.16 134.10 138.00 141.86 145.67 149.42 153.10 156.70 160.22 163.64 166.97 170.19 173.30 176.28 179.14 181.87	72.50 70.50 69.04 67.02 65.22 65.22 65.42 65.42 65.42 65.42 65.47 65.47 67.47 74.45 78.64 71.74 78.64 71.74 78.64 83.53 88.99 93.91
29	184.46	96.96
30	185.13	97.83

Circle Center At X = 117.3; Y = 151.4 and Radius, 86.4

Proposed I-69 Project Station 247 + 50 Line "D" - Drained Cond Ten Most Critical. C:169C.PLT By: Shawn Marcum 04-10-07 10:53am

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

04-10-07 Run Date: Time of Run: 10:52am

Input Data Filename: C:I69B
Output Filename: C:I69B Output Filename: C:I69B Output Filename: Plotted Output Filename: C:I69B.PLT

PROBLEM DESCRIPTION Proposed I-69 Project

Station 247+50 Line "D" - Earthquake

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 340.00 to Y values listed.

6 Top Boundaries 8 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	72.00	100.00	72.00	1
2	100.00	72.00	189.00	99.00	2
3	189.00	99.00	208.00	102.00	2
4	208.00	102.00	252.00	102.00	2
5	252.00	102.00	271.00	99.00	2
6	271.00	99.00	353.00	72.00	2
7	100.00	72.00	353.00	72.00	1
8	.00	52.00	353.00	52.00	3

ISOTROPIC SOIL PARAMETERS

3 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (psf) (deg) Param. (psf) No.

1	115.0	115.0	1000.0	. 0	.00	. 0	1
2	120.0	120.0	1000.0	. 0	.00	. 0	1
3	140.0	140.0	8000.0	. 0	.00	. 0	1

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	70.00
2	353.00	70.00

BOUNDARY LOAD (S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	210.00	250.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .100 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned

Cavitation Pressure = .0 psf

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 50.00 ft. and X = 120.00 ft.

Each Surface Terminates Between X = 150.00 ft. and X = 290.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

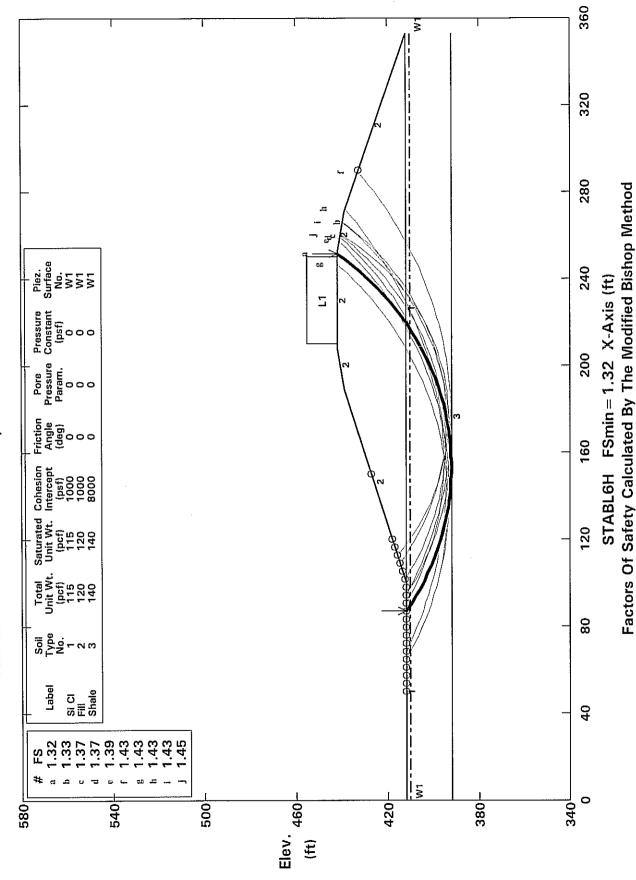
Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 48 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1,0,		
1	86.84	72.00
2	90.23	69.87
3	93.68	67.85
4	97.20	65.94
5	100.77	64.15
6	104.41	62.48
7	108.10	60.93
8	111.83	59.50
9	115.61	58.20
10	119.44	57.02
11	123.30	55.97
12	127.19	55.05
13	131.11	54.25
14	135.05	53.58
15	139.01	53.05
16	142.99	52.64
17	146.98	52.37
18	150.98	52.22
19	154.98	52.21
20	158.98	52.33
21	162.97	52.58
22	166.95	52.97
23	170.92	53.48
24	174.87	54.13
25	178.79	54.90
26	182.69	55.80

```
56.83
27
          186.55
28
          190.38
                        57.99
          194.17
                        59.27
29
30
          197.92
                        60.68
          201.61
                        62.21
31
32
          205.26
                        63.86
33
          208.84
                        65.63
                        67.51
34
          212.37
                        69.51
35
          215.84
36
          219.23
                        71.63
                        73.85
37
          222.56
                        76.19
38
          225.81
          228.98
                        78.62
39
                        81.17
          232.06
40
41
          235.07
                        83.81
42
          237.98
                        86.55
                        89.38
43
          240.81
                        92.31
44
          243.53
                        95.32
45
          246.17
          248.70
                        98.42
46
                       101.60
47
          251.12
          251.41
                       102.00
48
```


Circle Center At X = 153.3; Y = 173.7 and Radius, 121.5

> *** 1.319 ***

Failure Surface Specified By 49 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	94.21	72.00
2	97.66	69.98
3	101.17	68.06
4	104.74	66.24
5	108.35	64.54
6	112.02	62.94
7	115.73	61.45
8	119.49	60.07
9	123.28	58.81
10	127.11	57.66
11	130.98	56.62
12	134.87	55.70
13	138.79	54.89
14	142.73	54.21
15	146.69	53.64
16	150.66	53.18
17	154.65	52.85
18	158.64	52.63
19	162.64	52.54
20	166.64	52.56
21	170.64	52.70
22	174.63	52.96

Ten Most Critical, C:169B.PLT By: Shawn Marcum 04-10-07 10:52am Proposed I-69 Project Station 247 + 50 Line "D" - Earthquake

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

 Run Date:
 04-09-07

 Time of Run:
 1:21pm

Run By: Shawn Marcum
Input Data Filename: C:I69RPCU
Output Filename: C:I69RPCU.OUT
Plotted Output Filename: C:I69RPCU.PLT

PROBLEM DESCRIPTION Proposed I-69 Project

Station 17+00 Ramp C - Undrained Cond

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 370.00 to Y values listed.

8 Top Boundaries 11 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	47.00	15.00	42.00	1
2	15.00	42.00	20.00	42.00	1
3	20.00	42.00	49.00	50.00	1
4	49.00	50.00	79.00	48.00	1
5	79.00	48.00	108.00	40.00	1
6	108.00	40.00	112.00	40.00	2
7	112.00	40.00	168.00	59.00	1
8	168.00	59.00	240.00	59.00	1
9	.00	40.00	108.00	40.00	2
10	112.00	40.00	240.00	40.00	2
11	.00	30.00	240.00	30.00	3

ISOTROPIC SOIL PARAMETERS

3 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez.

		Unit Wt. (pcf)	Intercept (psf)	_	Pressure Param.		
1	115.0	115.0	1000.0	. 0	.00	. 0	1
2	110.0	110.0	250.0	. 0	.00	.0	1
3	120.0	120.0	2000.0	. 0	.00	.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point No.	X-Water (ft)	Y-Water (ft)		
1 2	.00 240.00	40.00 40.00		

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 10.00 ft. and X = 120.00 ft.

Each Surface Terminates Between X = 140.00 ft. and X = 210.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

The Factor Of Safety For The Trial Failure Surface Defined By The Coordinates Listed Below Is Misleading.

Failure Surface Defined By 41 Coordinate Points

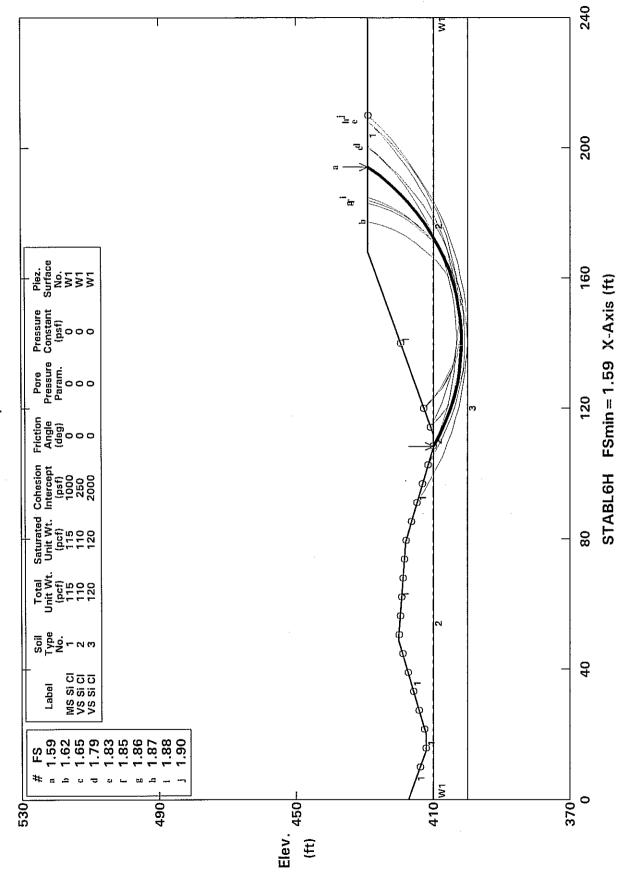
23 142.49 49.54 24 143.77 50.78

Factor Of Safety For The Preceding Specified Surface =-16.886

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 25 Coordinate Points


Point	X-Surf	Y-Surf
No.	(ft)	(ft)
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	(ft) 108.42 111.98 115.64 119.40 123.23 127.12 131.06 135.03 139.03 143.03 147.02 150.98 154.91 158.79 162.60 166.33 169.97 173.50 176.91 180.18 183.32 186.29 189.11	(ft) 40.00 38.17 36.57 35.18 34.03 32.41 31.76 31.79 32.57 33.31 35.57 38.64 40.52 44.39 50.91
24	191.74	55.92
25	194.13	59.00

Circle Center At X = 140.5; Y = 98.1 and Radius, 66.4

*** 1.590 ***

Failure Surface Specified By 21 Coordinate Points

Ten Most Critical. C:169RPCU.PLT By: Shawn Marcum 04-09-07 1:21pm Proposed I-69 Project Station 17 + 00 Ramp C - Undrained Cond

Factors Of Safety Calculated By The Modified Bishop Method

** STABL6H ** bу Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run:

04-10-07 10:28am

Run By:

Shawn Marcum

Input Data Filename: C:I69RPCD Output Filename: C:I69RPCD.

C:I69RPCD.OUT

Plotted Output Filename: C:I69RPCD.PLT

PROBLEM DESCRIPTION

Proposed I-69 Project

Station 17+00 Ramp C - Drained Cond

BOUNDARY COORDINATES

NOTE: User defined origin was specified.

Add 00.00 to X values and 370.00 to Y values listed.

8 Top Boundaries 11 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1 2	.00 15.00	47.00 42.00	15.00 20.00	42.00 42.00	1
3 4	20.00	42.00	49.00	50.00	1
5	79.00	50.00 48.00	79.00 108.00	48.00 40.00	1 1
6 7	108.00 112.00	40.00 40.00	112.00 168.00	40.00 59.00	2 1
8 9	168.00 .00	59.00 40.00	240.00. 108.00	59.00	1
10	112.00	40.00	240.00	40.00 40.00	2 2
11	.00	30.00	240.00	30.00	3

ISOTROPIC SOIL PARAMETERS

3 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez.

	Unit Wt. (pcf)	Unit Wt. (pcf)	Intercept (psf)	Angle (deg)	Pressure Param.	Constant (psf)	Surface No.
1	120.0	120.0	40.0	28.0	.00	.0	1
2	110.0	110.0	40.0	27.0	.00	. 0	1.
3	120.0	120.0	40.0	28.0	.00	. 0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	40.00
2	240.00	40.00

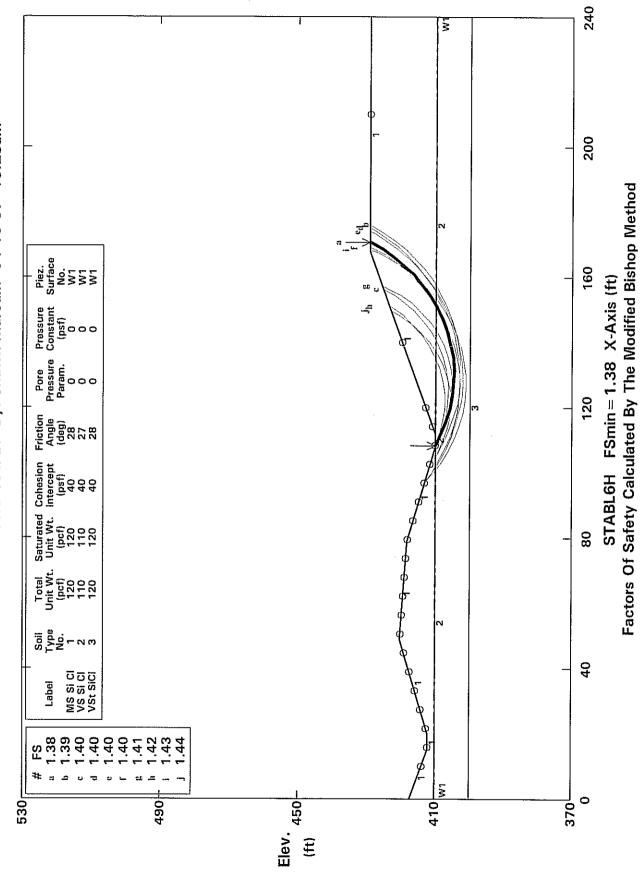
A Horizontal Earthquake Loading Coefficient Of .100 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned

Cavitation Pressure = .0 psf

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.


20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 10.00 ft. and X = 120.00 ft.

Each Surface Terminates Between X = 140.00 ft. and X = 210.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

Ten Most Critical. C:169RPCD.PLT By: Shawn Marcum 04-10-07 10:28am Proposed I-69 Project Station 17 + 00 Ramp C - Drained Cond

** STABL6H ** by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

 Run Date:
 04-09-07

 Time of Run:
 2:03pm

Run By: Shawn Marcum
Input Data Filename: C:169RPCE
Output Filename: C:169RPCE.OUT

Output Filename: C:I69RPCE.OUT Plotted Output Filename: C:I69RPCE.PLT

PROBLEM DESCRIPTION Proposed I-69 Project

Station 17+00 Ramp C - Earthquake Cond

BOUNDARY COORDINATES

NOTE: User defined origin was specified.
Add 00.00 to X values and 370.00 to Y values listed.

8 Top Boundaries 11 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	47.00	15.00	42.00	1
2	15.00	42.00	20.00	42.00	1
3	20.00	42.00	49.00	50.00	1
4	49.00	50.00	79.00	48.00	1
5	79.00	48.00	108.00	40.00	1
6	108.00	40.00	112.00	40.00	2
7	112.00	40.00	168.00	59.00	1
8	168.00	59.00	240.00	59.00	1
9	.00	40.00	108.00	40.00	2
10	112.00	40.00	240.00	40.00	2
11	.00	30.00	240.00	30.00	3

ISOTROPIC SOIL PARAMETERS

3 Type(s) of Soil

Soil Total Saturated Cohesion Friction Pore Pressure Piez.

	Unit Wt. (pcf)		Intercept (psf)	_	Pressure Param.		
1	115.0	115.0	1000.0	.0	.00	. 0	1
2	110.0	110.0	250.0	. 0	.00	.0	1
3	120.0	120.0	2000.0	.0	.00	. 0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	40.00
2	240.00	40.00

A Horizontal Earthquake Loading Coefficient Of .100 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned

Cavitation Pressure = .0 psf

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 10.00 ft. and X = 120.00 ft.

Each Surface Terminates Between X = 140.00 ft. and X = 210.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

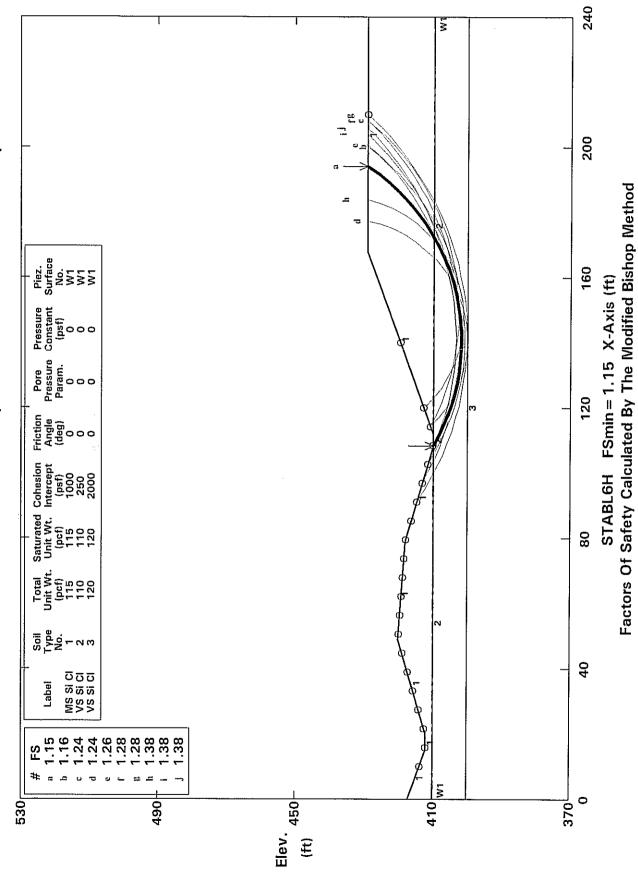
4.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 25 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
No. 1 2 3 4 5 6 7 8 9 10 11 23 14 15 16 17 18 19 20 21 22	(ft) 108.42 111.98 115.64 119.40 123.23 127.12 131.06 135.03 139.03 143.03 147.02 150.98 154.91 158.79 162.60 166.33 169.97 173.50 176.91 180.18 183.32 186.29	(ft) 40.00 38.17 36.57 35.18 34.03 32.41 31.76 31.79 32.57 33.31 35.53 36.67 38.64 40.52 44.91 47.39 50.06
23	189.11	52.91
24	191.74	55.92
25	194.13	59.00


Circle Center At X = 140.5; Y = 98.1 and Radius, 66.4

*** 1.150 ***

Failure Surface Specified By 29 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	102.63	41.48

Proposed I-69 Project Station 17 + 00 Ramp C - Earthquake Cond Ten Most Critical. C:169RPCE.PLT By: Shawn Marcum 04-09-07 2:03pm

** STABL6H ** by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: 04-09-07 Time of Run: 2:28pm

Input Data Filename: C:I69RPDU OUTPUT Filename:

C:I69RPDU.OUT Plotted Output Filename: C:I69RPDU.PLT

PROBLEM DESCRIPTION Proposed I-69 Project

20+00 Ramp D - Undrained Cond

BOUNDARY COORDINATES

NOTE: User defined origin was specified. Add 00.00 to X values and 350.00 to Y values listed.

10 Top Boundaries 14 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	68.00	74.00	66.00	1
2	74.00	66.00	90.00	60.00	1
3	90.00	60.00	94.00	60.00	1
4	94.00	60.00	110.00	65.00	1
5	110.00	65.00	145.00	77.00	2
6	145.00	77.00	151.00	78.00	2
7	151.00	78.00	181.00	76.00	2
8	181.00	76.00	187.00	75.00	2
9	187.00	75.00	230.00	64.00	2
10	230.00	64.00	240.00	60.00	1
11	110.00	65.00	230.00	64.00	1
12	.00	57.00	240.00	57.00	3
13	.00	50.00	240.00	50.00	4
14	.00	40.00	240.00	40.00	5

ISOTROPIC SOIL PARAMETERS

Soil Type No.			Cohesion Intercept (psf)			Pressure Constant (psf)	Piez. Surface No.
1 2	110.0 120.0	110.0 120.0	250.0 1000.0	.0	.00 .00	. 0 . 0	1 1
3	115.0	115.0	1000.0	.0	.00	.0	1
4	110.0	110.0	500.0	. 0	.00	.0	1
5	140.0	140.0	8000.0	. 0	.00	.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	60.00
2	240.00	60.00

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	151.00	181.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 30.00 ft.

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 9 20	51.05 54.66 58.36 62.13 65.97 69.86 73.80 77.77 81.76 85.75 89.75 93.74 97.70 101.62 105.50 109.33 113.08 116.76 120.34 123.83	66.62 64.90 63.37 62.04 60.91 59.28 58.40 58.40 58.43 60.17 62.35 63.31 67.08 69.04
21	126.26	70.58

Factor Of Safety For The Preceding Specified Surface =-28.714

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

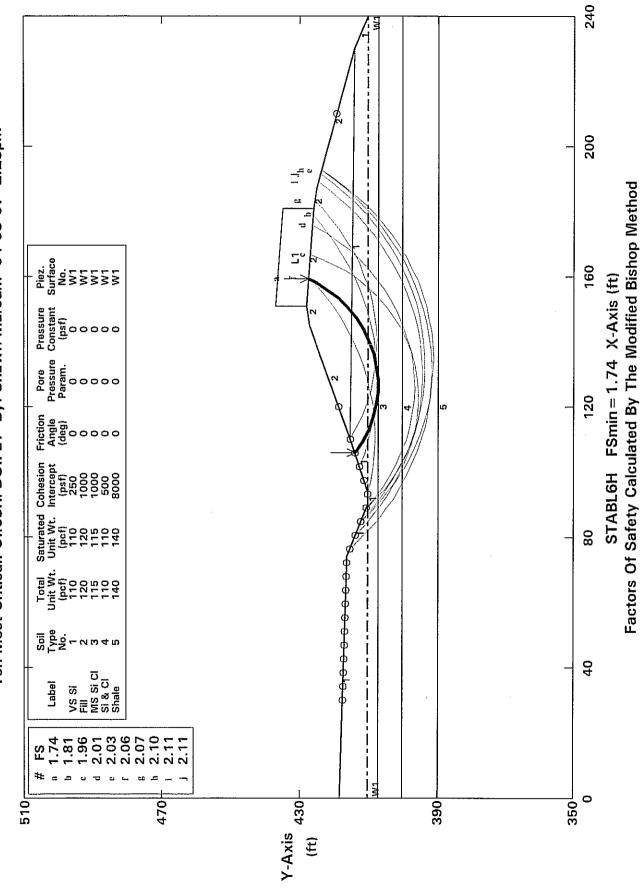
Failure Surface Specified By 17 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	105.79	63.68
2	109.18	61.56
3	112.78	59.83
4	116.56	58.50
5	120.45	57.59
6	124.42	57.12
7	128.42	57.08
8	132.40	57.49
9	136.31	58.33
10	140.11	59.59

```
143.74 61.27
  11
  12
          147.17
                     63.33
  13
          150.35
                    65.76
          153.24
                     68.52
  14
          155.81
                     71.59
  15
          158.03
159.35
                      74.91
  16
  17
                      77.44
Circle Center At X = 126.7; Y = 93.4 and Radius, 36.3
     *** 1.737 ***
```

Failure Surface Specified By 22 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2 3 4 5 6 7 8	101.58 105.35 109.19 113.08 117.01 120.98 124.97 128.97	62.37 61.04 59.91 58.98 58.26 57.74 57.44
9 10	132.97 136.95	57.45 57.77
11	140.92	58.30
12 13	144.85 148.74	59.04 59.98
14	152.57	61.13
15 16	156.34 160.03	62.47 64.01
17	163.64	65.74
18	167.15	67.66
19	170.55	69.75
20	173.84	72.03
21	177.01	74.47
22	178.95	76.14


Circle Center At X = 128.8; Y = 133.7 and Radius, 76.3

*** 1.813 ***

Failure Surface Specified By 25 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)

Ten Most Critical. C:169RPDU.PLT By: Shawn Marcum 04-09-07 2:28pm Proposed I-69 Project 20 + 00 Ramp D - Undrained Cond

** STABL6H ** by Purdue University

--Slope Stability Analysis-Simplified Janbu, Simplified Bishop or Spencer`s Method of Slices

Run Date: 04-10-07 Time of Run: 10:32am

Run By: Shawn Marcum
Input Data Filename: C:I69RPDD
Output Filename: C:I69RPDD.OUT
Plotted Output Filename: C:I69RPDD.PLT

PROBLEM DESCRIPTION Proposed I-69 Project

20+00 Ramp D - Drained Cond

BOUNDARY COORDINATES

NOTE: User defined origin was specified. Add 00.00 to X values and 350.00 to Y values listed.

10 Top Boundaries 14 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	68.00	74.00	66.00	1
2	74.00	66.00	90.00	60.00	1
3	90.00	60.00	94.00	60.00	1
4	94.00	60.00	110.00	65.00	1
5	110.00	65.00	145.00	77.00	2
6	145.00	77.00	151.00	78.00	2
7	151.00	78.00	181.00	76.00	2
8	181.00	76.00	187.00	75.00	2
9	187.00	75.00	230.00	64.00	2
10	230.00	64.00	240.00	60.00	ī
11	110.00	65.00	230.00	64.00	1
12	.00	57.00	240.00	57.00	3
13	.00	50.00	240.00	50.00	4
14	.00	40.00	240.00	40.00	5

ISOTROPIC SOIL PARAMETERS

	Unit Wt.		Cohesion Intercept (psf)		Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
l	110.0	110.0	40.0	27.0	.00	. 0	1
2	120.0	120.0	40.0	28.0	.00	.0	1
3	115.0	115.0	40.0	28.0	.00	.0	1
4	110.0	110.0	40.0	27.0	.00	.0	1
5	140.0	140.0	8000.0	. 0	.00	. 0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	.00	60.00
2	240.00	60.00

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	151.00	181.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .100 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned

Cavitation Pressure = .0 psf

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 30.00 ft. and X = 110.00 ft.

Each Surface Terminates Between X = 120.00 ft.and X = 210.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * * *

Failure Surface Specified By 17 Coordinate Points

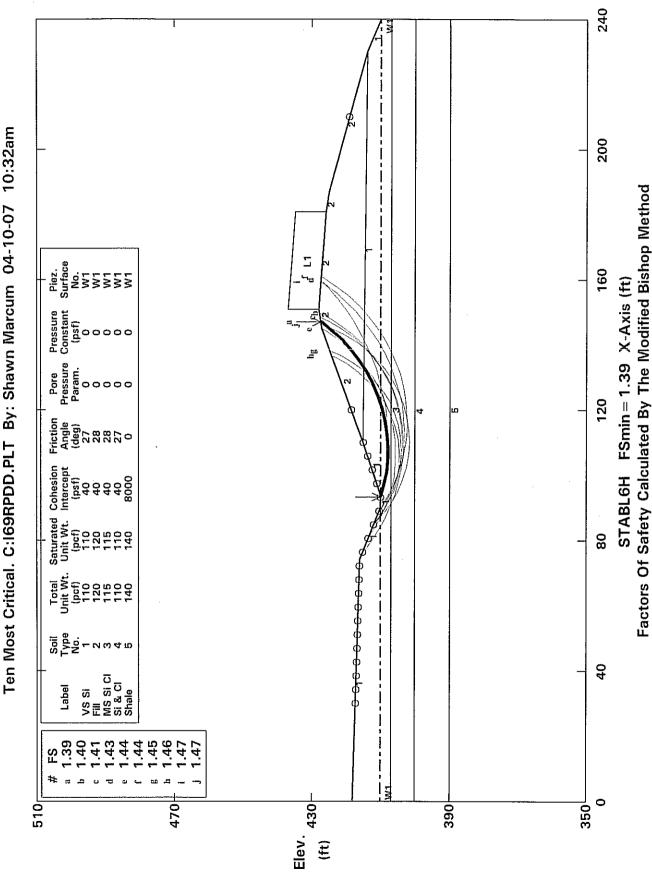
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	93.16	60.00
2	97.02	58.98
3	100.96	58.27
4	104.94	57.88
5	108.94	57.82
6	112.93	58.08
7	116.89	58.66
8	120.79	59.56
9	124.60	60.77
10	128.30	62.29
11	131.87	64.10
12	135.28	66.19
13	138.50	68.55
14	141.53	71.17
15	144.34	74.02
16	146.90	77.09
17	147.08	77.35

Circle Center At X = 107.7; Y = 107.2 and Radius, 49.4

*** 1.386 ***

Failure Surface Specified By 20 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	84.74 88.09 91.63 95.32 99.14 103.05 107.02 111.01 115.01 118.96 122.85 126.63 130.29 133.78 137.08 140.16 142.99 145.56 147.85	61.97 59.79 57.39 56.39 55.19 54.34 53.85 53.75 54.54 56.49 56.49 56.47 62.68 68.00 71.06 74.35
20	149.81	77.80


Circle Center At X = 110.5; Y = 97.9 and Radius, 44.2

*** 1.404 ***

Failure Surface Specified By 20 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	84.74	61.97
2	88,03	59,71
3	91.53	57.77
4	95.19	56.16
5	98.99	54.91
6	102.89	54.02
7	106.86	53.50
8	110.86	53.36
9	114.85	53.60
10	118.80	54.22

Proposed I-69 Project 20+00 Ramp D - Drained Cond

** STABL6H ** by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop

or Spencer's Method of Slices

Run Date: 04-09-07 Time of Run: 2:36pm

Input Data Filename: C:I69RPDE
Output Filename: C:I69RPDE
Plotted Output E23 C:I69RPDE.OUT Plotted Output Filename: C:I69RPDE.PLT

PROBLEM DESCRIPTION Proposed I-69 Project

20+00 Ramp D - Earthquake Cond

BOUNDARY COORDINATES

NOTE: User defined origin was specified. Add 00.00 to X values and 350.00 to Y values listed.

10 Top Boundaries 14 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	68.00	74.00	66.00	1
2	74.00	66.00	90.00	60.00	1
3	90.00	60.00	94.00	60.00	1
4	94.00	60.00	110.00	65.00	1
5	110.00	65.00	145.00	77.00	2
<u>.</u> 6	145.00	77.00	151.00	78.00	2
7	151.00	78.00	181.00	76.00	2
8	181.00	76.00	187.00	75.00	2
9	187.00	75.00	230.00	64.00	2
10	230.00	64.00	240.00	60.00	1
11	110.00	65.00	230.00	64.00	1
12	.00	57.00	240.00	57.00	3
13	.00	50.00	240.00	50.00	4
14	.00	40.00	240.00	40.00	5

ISOTROPIC SOIL PARAMETERS

Soil Type No.		Saturated Unit Wt. (pcf)			Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
1	110.0	110.0	250.0	.0	.00	. 0	1
2	120.0	120.0	1000.0	. 0	.00	. 0	1
3	115.0	115.0	1000.0	. 0	.00	. 0	1
4	110.0	110.0	500.0	.0	.00	.0	1
5	140.0	140.0	8000.0	. 0	.00	. 0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 2 Coordinate Points

Point	X-Water	Y-Water	
No.	(ft)	(ft)	
1	.00	60.00	
2	240.00	60.00	

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(lb/sqft)	(deg)
1	151.00	181.00	200.0	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .100 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .000 Has Been Assigned

Cavitation Pressure = .0 psf

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

400 Trial Surfaces Have Been Generated.

20 Surfaces Initiate From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 30.00 ft. and X = 110.00 ft.

Each Surface Terminates Between X = 120.00 ft. and X = 210.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

4.00 ft. Line Segments Define Each Trial Failure Surface.

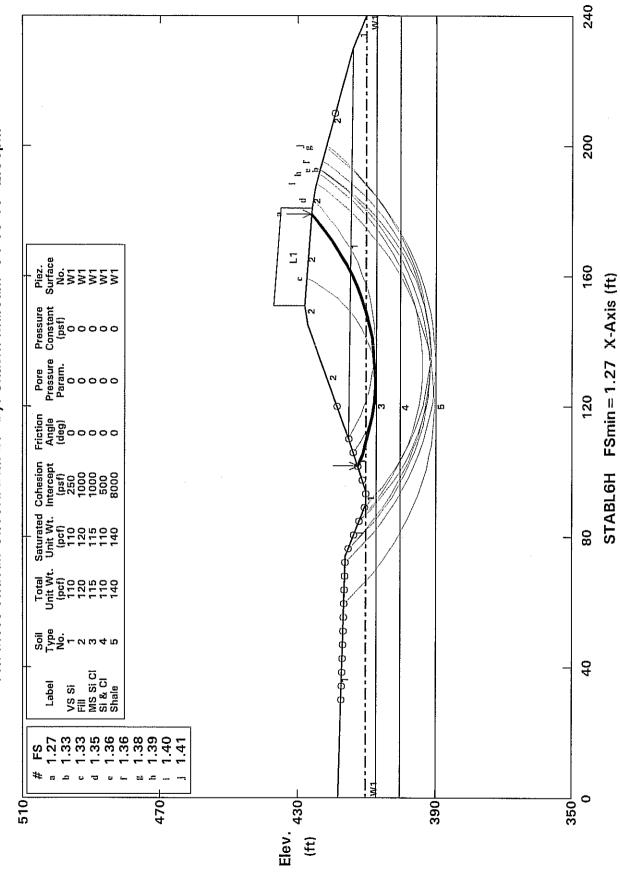
Following Are Displayed The Ten Most Critical Of The Trial

Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 22 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	101.58	62.37
2	105.35	61.04
3	109.19	59.91
4	113.08	58.98
5	117.01	58.26
6	120.98	57.74
7	124.97	57.44
8	128.97	57.34
9	132.97	57.45
10	136.95	57.77
11	140.92	58.30
12	144.85	59.04
13	148.74	59.98
14	152.57	61.13
15	156.34	62.47
16	160.03	64.01
17	163.64	65.74
18	167.15	67.66


Failure Surface Specified By 33 Coordinate Points

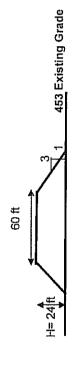
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1 2 3 4 5 6 7 8 9 0 1 1 2 1 3 1 4 5 6 7 8 9 0 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	84.74 87.62 90.65 93.83 97.15 100.59 104.15 107.80 111.54 115.36 119.24 123.17 127.13 131.12 135.12 139.12 143.10 147.05 150.95 154.80 158.58 162.28 165.88 169.37 172.75 175.99 179.10 182.05 184.84 187.47	61.29 54.193 48.401 41.385 42.530 41.42.41 41.47 42.41.47 43.44.77 49.663 66.55
31	189.91	69.71
32	192.16	73.02
33	192.51	73.59

*** 1.267 ***

Circle Center At X = 134.1; Y = 110.3 and Radius, 69.0

Ten Most Critical. C:169RPDE.PLT By: Shawn Marcum 04-09-07 2:36pm Proposed I-69 Project 20+00 Ramp D - Earthquake Cond

Factors Of Safety Calculated By The Modified Bishop Method


APPENDIX H

SETTLEMENT CALCULATIONS

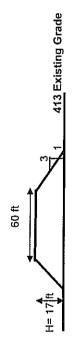
PROJECT I 69 DESIGN/BUILD	PROJECT NUMBER <u>86. 0048/, 018/</u> SHEET OF DATE H-10-07 COMPUTED BY D. B.I.R.D
DES. No. 0500 436 38+96 LINE S-Z-A (TB-3)	FROM FOULDS & DAVIS L'ELAST. SOL, for Soil & Roch Mere "
1·2 - x/H = 0 x/H - z/H -	L/H = co
1.0 0.8 VH \CNOR	
0.6	3
· · · · · · · · · · · · · · · · · · ·	5 10 20 50 100
Z/H 24'	3453
W% LAYER Po AP Pc Log(Pc B) RR 29% (D) 301 24(10) Po 903 0.477 6.01	$\frac{P_{c}}{5} = \frac{122}{3.52} = \frac{3.61}{3.52} = \frac{3.52}{0.55} = \frac{0.114}{0.114} = \frac{122}{0.55}$
$\frac{22\%}{2} \frac{(288)}{(288)} \frac{2688}{(288)} \frac{0.697}{(288)} \frac{0.697}{(288)}$	6.0" Z=6,69" 445
$\frac{114 = 805}{1,035} \frac{0.58}{90(2900)} \frac{3105}{1035} \frac{0.477}{0.021}$ $\frac{23\%}{1035} \frac{3}{1035} \frac{0.477}{1035} \frac{0.021}{0.021}$	1035 +2592 117 0.067 0.125 3105 0.71"

Embankment Settlement Calculations Interstate 69 Design/Build Des. No. 0500436

38+96 Line S-2-A (Boring TB-3)

Existing Grade 453

l at GS 0.94


Water Table Elevation: 452 Embankment Unit Wt. (pcf) 120

1/ft depth 0.0021 Embankment Height (ft) 24

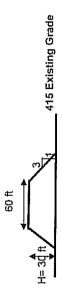
	Layer	ver) AD ((bst)							
	Top Elev	Bottom Elev	%M	OCR	Wet Unit Wt. (pcf)	Wet Effective Unit Wt. Unit Wt. (pcf) (pcf)		Layer Center (EL.)	Po (psf)	Embank- ment (psf)	AP Total Po+ΔP (psf) (psf)	Po+∆P (psf)	Pc (psf)	Initial Void Void Co	පි	RR= Cr/ (1+e ₀)	CC/ (1+e ₀)	Pc- P ₀ +∆P (psf)
Siy CL Loam	453	445	29.0%	3.00	122	09		449		2880	2880	3181	905	0.78	0.26	0.015		-2279
am	445	441	22.0%	4.00	129	- 67	48	443		2647	2647	3319	2689	0.59	0.19	0.020		-630
Clay	441	434	23.0%	3.00	128	99	8	437.5	_	2613	2613	3648	3104	0.62	0.20	0.021		-544
Shale	434																	

		RR only			RR to Pc		Pc to	Pc to Po+∆P @ CR) CR	
	Po+∆P Po (psf)	(o9)gol	(ni) H∆	od/od	(o9\29)gol	(ni) H∆	(ìeq) ၁٩\٩∆+०٩	-(oq\q\-\oq)gol -(oq\q\-\oq)gol	(ni) H∆	(ni) H∆ IstoT
R & V Compression	0.0000	0	00.00	3.00	0.4771	0.69	3.53	0.54733	5.99	6.68
R & V Compression	0.0000	0	0.00	4.00	0.6021	0.59	1.23	0.09145	0.53	1.12
R & V Compression	0.000	0	0.00	3.00	0.4771	0.83	1.18	0.07011	0.74	1.57
┪										
					To	tal Emba	nkmen	Total Embankment Settlement (in.	nt (in.)	9.37

Embankment Settlement Calculations 20+00 Ramp "D" (Boring RB-58) Interstate 69 Design/Build Des. No. 0500436

Existing Grade 413

lat GS 0.94


Water Table Elevation: 412 Embankment Unit Wt. (pcf) 120

I/ft depth 0.0021 Embankment Height (ft) 17

	Pc- P ₀ +∆P (psf)	,	-545		-1146		
	CR= Cc/ (1+e ₀)	,	0.125	,	0.195		
	RR= Cr/ (1+e ₀)	-	0.021		0.032	1	
	ວິ	1	0.20	'	0.47		
	Initial Void Ratio e ₀	1	0.62	,	1.39		
	Initial Void Pc (psf) Ratio e ₀		1998	•	2045		
	Po+∆P (psf)	2154	2543	2935	3191		
(bst)	ΔP Total Po+ΔP (psf) (psf)	1905	1877	1849	1828		
AP (psf)	Embank- ment (psf)	1905	1877	1849	1828		
	Po (psf)	250	999	1086	1363		
	Layer Center (EL.)	410	403.5	397	392		
	H (in.)	72	84	72	48		
	Effective Unit Wt. (pcf)	62	99	63	44		
	Wet Unit Wt. (pcf)	125	128	126	106		
	OCR		3.00	٠	1.50		
	%M	26.0%	23.0%	25.0%	53.0%		
'er	Bottom Elev	407	400	394	390		
Layer	Top Elev	413	407	400	394	390	
	Layer	Silt	Siy CL	Silt	Clay	Shale	į

	(ni) H∆ lstoT	,	1.93	1	2.08	4.01
CR	(ni) H∆	•	1.10	•	1.81	int (in.)
Pc to Po+AP @ CR	-(oq/dV+oq)gol (oq\aq)gol	-	0.10467	,	0.19324	Total Embankment Settlement (in.)
Pc to	(ì≳q) ɔЧ\Ч∆+оЧ	-	1.27	,	1.56	nkmen
	(ni) H∆	ı	0.83	1	0.27	otal Emba
RR to Pc	log(Pc/Po)	-	0.4771	-	0.1761	To
	o4\s4	•	3.00	•	1.50	
	(ni) H∆		0.00	-	00.0	
RR only	(o9)gol	-	0		0	
	Po+∆P /Po (psf)		0.0000	-	0.0000	
	Settlement Type	_	R & V Compression	**	R & V Compression	

Embankment Settlement Calculations 247+97 Line "D" (Boring TB-7) Interstate 69 Design/Build Des. No. 0500436

Existing Grade 415

l at GS 0.94

I/ft depth 0.0021 Embankment Height (ft) 30

Water Table Elevation: 404 Embankment Unit Wt. (pcf) 120

			,															
. orenan	La	ayer								AP (PSF)	SF)							
					Wet	Effectiv		Layer		Embank-				Initial		RR=	CR=	Pc
		Battom			Unit Wt.	e Unit		Center	Б	ment	∆P Total	Po+AP		Void		č	Ö	P ₀ +VP
Layer	Top Elev	Elev	W%	OCR	(bct)	Wt. (pcf)	H (in.)	(pcf) Wt. (pcf) H (in.) (EL.)		(bsd)	(bst) (bst)	(bsd)	Pc (psf)	Ratio e _o	റ്റ	(1+e ₀)	(1+e ₀)	(bst)
Siy CL Fill	415	409	28.0%	3.00	123	123	72	412		3361	3361	3730	1106	0.75	0.25	0.023	0.141	-2624
Siy CL Loam	409	404	26.0%	3.00	125	125	09	406.5	1049		3320	4369	3148	0.70	0.23	0.022	0.135	-1221
Clay	404	397	23.0%	4.00	128	99	84	400.5			3274	4865	ı	0.62	0.20	0.021	0.125	1497
Sandstone	397											-						

		_				
	(ni) H∆ IstoT	6.15	1.79	0.85		8.79
SCR	(ni) H∆	5.35	1.15	0.00		nt (in.)
Pc to Po+AP @ CR	-(o4\₽\Po)- log(Po+∆P\Po)-	0.52798	0.14237	0		Total Embankment Settlement (in.)
Pc to	(feq) ၁٩/٩∆÷٥٩	3.37	1.39	00.0		nkment
	(ni) H∆	0.81	0.64	0.00		taf Emba
RR to Pc	(oq\pq)gol	0.4771	0.4771	0		Tol
	0억/2억	3.00	3.00	0.00		
	(ni) H∆	0.00	0.00	0.85		
RR only	log(Po)	0	0	0.48551		
	Po+∆P /Po (psf)	0.000	0.0000	3.0585		
	Settlement Type	R & V Compression	R & V Compression	Recompression		

Embankment Settlement Calculations 244+32 Line "D" (Boring TB-4) Interstate 69 Design/Build Des. No. 0500436

420 Existing Grade 60 ft

Existing Grade 420

lat GS 0.94

Water Table Elevation: 411

I/ft depth 0.0021 ankment Height (ft) 23

	Embai
ייםוכן ומחום רוביםוחו. זון	Embankment Unit Wt. (pcf) 120

			,	_			,
	Pc- P ₀ +ΔP (psf)	-870	-1138	-641	-21		
	CR= Ca/ (1+e ₀)	0.131	0.159	0.146	0.184		
	RR= Cr/ (1+e ₀)	0.022	0.027	0.024	0.031		
	၁၁	0.22	0.31	0.26	0.41		
	Initial Void Ratio e _o	29'0	0.93	0.80	1.24		
	Initial Void) Pc (psf) Ratio e _o	2265	2756	3658	4771		
	^+o² (psf)	3134	3894	4299	4791		
(PSF)	AP Total F (psf)	2568	2516	2470	2406		
N ΔP	Embank- ment (psf)	2568	2516	2470	2406		
	Po (psf)	995	1378	1829	2385		
	Layer Center (EL.)	415.5	406.5	398.5	387.5		
	H (in.)	108	108	84	180		
	Wet Effectiv Unit Wt. e Unit (pcf) Wt. (pcf) H (in.)	126	55	29	47		
	Wet Unit Wt. (pcf)	126	117	121	109		
	OCR	4.00			2.00		
	%M	25.0%	35.0%	30.0%	47.0%		
-ауег	Ω	411	402	395	380		
Lay	Top Elev	420	411	402	395	380	
	Layer	Siy CL Loam	Siy CL Loam	Clay	Clay	Shale	

10.08	nt (in.)	Total Embankment Settlement (in.)	ınkmen	tal Emba	Tol					
1.73	0.06	0.00186	1.00	1.67	0.301	2.00	0.00	0	0.0000	R & V Compression
1.48	0.86	60020.0	1.18	0.62	0.301	2.00	0.00	0	0.000	R & V Compression
3.44	2.58	0.15014	1,41	98.0	0.301	2.00	0.00	0	0.0000	R & V Compression
3.43	2.00	0.14118	1.38	1.42	0.6021	4.00	0.00	0	0.0000	R & V Compression
(ni) H∆ lstoT	(ni) H∆	-(o4/4√+o4)6ol -(o4/54)6ol	Po+∆P/Pc (psf)	(ni) H∆	(oq\oq)gol	마시>리	(ni) H∆	(o9) <u>pol</u>	Po+∆P /Po (psf)	Settlement Type
	CR	Pc to Po+∆P @ CR	Pc fc		RR to Pc			RR only		

CHENT American Structures oint

PROJECT Proposed I-69 Project

Settlement Calculations

PROJECT NUMBER 86. 00481, 0181 / OF / COMPUTED BY SM CHECKED BY _____

Calculation of Cr

Load Incr.

$$\frac{4\pi n/A^{2}}{A^{2}}$$
 do do deso tesimon Aug Harin. $\frac{0.197 \text{ H}_{ar}^{2}}{1.50}$
1 196 245 221 0.8 0.39 0.037
2 360 430 395 0.6 0.30 0.030
Aug = 0.034

Use Cy = 0,034 m²/mm

Calculation of tgo

$$T = 0.848$$

$$t_{90} = \frac{T + d^2}{Cv} = \frac{0.848 (228 \text{ m})^2}{0.034 \text{ m/s}} = 1/297,000 \text{ mm}$$

= 900 days

CLIENT AMERICAN Structurepoint

PROJECT Proposed I-69 Project

Settlement Calculations

PROJECT NUMBER 86-00481,0181 _____OF_____ 5/10/07 COMPUTED BY __ 5/V CHECKED BY _____

Wick Drain Spacing us Time

$$C_V = 0.034$$
 m/mm $C_H = 1.5 C_V = 0.05$ m

Radius well =
$$r_{\omega} = 2.5$$
 in $R = \frac{r_{\omega}}{r_{\omega}} = 10.1$

$$F_{N} = |N(n) - \frac{3}{7} = |N(10.1) - \frac{3}{7} = 1.56$$

Degree of Consolidation =
$$U = 1 - \exp\left[\frac{-2T_R}{F_N}\right] = 0.9$$
 (for 90%)
$$T_R = \frac{C_H + 1}{C_R + 1}$$

$$T_R = \frac{C_H + 1}{C_R + 1}$$

$$\frac{1}{\sqrt{2}} = \frac{-r_e^2 F_n (1-u)}{2 c_H}$$

$$+\frac{1}{96\%} = \frac{-(25.2)^2(1.56) \ln(1-0.9)}{2(0.05)^{1/2}/min} = 22,800 min$$

Drain Spacing

Estmated 90% Consolidation Time

4 f	+
-----	---

APPENDIX I

LPILE OUTPUT

Licensed to: Tom Struewing

ATC Associates Inc.

High Mast Light Station 1582 +00 Line "A"

LATERALLY LOADED PILE ANALYSIS PROGRAM LPILE plus
PC VERSION 3.0 (C) COPYRIGHT ENSOFT, INC. 1997
THE PROGRAM WAS COMPILED USING MICROSOFT FORTRAN COMPILER, Offst 160 ft. Right
(C) COPYRIGHT MICROSOFT CORPORATION

I-69 Light TL-20

20 ft Long

************ ULTIMATE BENDING RESISTANCE AND FLEXURAL RIGIDITY

DIAMETER = 48.00 IN

KIP/IN**2 CONCRETE COMPRESSIVE STRENGTH = 4.000000

KIP/IN**2 REBAR YIELD STRENGTH = 60.000000

KIP/IN**2 MODULUS OF ELASTICITY OF STEEL = 29000.000000

NUMBER OF REINFORCING BARS = 20 ₩

AREA OF ONE REBAR = .156E+01 IN**2 \checkmark

NUMBER OF ROWS OF REINFORCING BARS = 11

COVER THICKNESS = 4.000 IN

SQUASH LOAD CAPACITY = 7918.42 KIP

ROW NUMBER	AREA OF REINFORCEMENT IN**2	DISTANCE TO CENTROIDAL AXIS IN
1 2 3 4 5 6 7 8 9 10	1.560000 3.120000 3.120000 3.120000 3.120000 3.120000 3.120000 3.120000 3.120000	20.0000 19.0211 16.1804 11.7557 6.1804 .0000 -6.1804 -11.7557 -16.1804 -19.0211 -20.0000

OUTPUT RESULTS FOR AN AXIAL LOAD = 4.00 KIP

MOMENT	EI	PHI	MAX STR	N AXIS
IN-KIP	KIP-IN**2	1/IN	IN/IN	IN
.113E+04 .555E+04	.11269E+10 .11103E+10	.000001	.00002	24.623 24.185

		I-69-	TL-20.1po	
.555E+04	.61684E+09	.000009	00013	14.327
.555E+04	.42704E+09	.000013	.00019	14.303
.593E+04	.34899E+09	.000017	.00024	14.307
.730E+04	.34767E+09	.000021	.00030	14 323
.866E+04	.34649E+09	.000025	.00036	14.346
.100E+05	.34537E+09	.000029	.00042	14.372
.114E+05	.34427E+09	.000033	.00048	14.400
.127E+05	.34328E+09	.000037	.00053	14.410
.140E+05	.34225E+09	.000041	.00059	14.441
.154E+05	.34122E+09	.000045	.00065	14.474
.167E+05	.34019E+09	.000049	.00071	14.508
.180E+05	.33917E+09	.000053	.00077	14.543
.261E+05	.31500E+09	.000083	.00121	14.559
.291E+05	.25770E+09	.000113	.00157	13.877
.306E+05	.21431E+09	.000143	.00190	13.272
.316E+05	.18278E+09	.000173	.00222	12.806
.322E+05	.15854E+09	.000203	.00252	12.424
325E+05	.13956E+09	.000233	.00281	12.079
-328E+05	.12489E+09	.000263	.00312	11.867
.331E+05	.11293E+09	.000293	.00343	11.695
.333E+05	.10304E+09	.000323	.00375	11.596
.333E+05	.94371E+08	.000353	.00406	11.500

THE ULTIMATE BENDING MOMENT AT A CONCRETE STRAIN OF 0.003 IS: .327E+05 IN-KIP

PROGRAM LPILE plus Version 3.0 (C) COPYRIGHT 1997 ENSOFT, INC. ALL RIGHTS RESERVED

32,700 in-kip

I-69 Light TL-20

UNITS--ENGLISH UNITS

INPUT INFORMATION

THE LOADING IS CYCLIC
NO. OF CYCLES = .10E+05 / O O O

PILE GEOMETRY AND PROPERTIES

PILE LENGTH 2 POINTS		= 2	52.00 IN	
X	DIAMETER	MOMENT OF INERTIA	AREA	MODULUS OF ELASTICITY
IN .00 252.00	IN 48.000 48.000	IN**4 .261E+06 .261E+06	IN**2 .181E+04 .181E+04	LBS/IN**2 .310E+07 .310E+07

SOILS INFORMATION

I-69-TL-20.1po

X AT THE GROUND SURFACE 12.00 IN SLOPE ANGLE AT THE GROUND SURFACE .00 DEG. 3 LAYER(S) OF SOIL LAYER 1 THE SOIL IS A STIFF CLAY WITH NO FREE WATER X AT THE TOP OF THE LAYER = 12.00 IN X AT THE BOTTOM OF THE LAYER 234.00 IN = MODULUS OF SUBGRADE REACTION = .100E+03 LBS/IN**3 k=100 $\frac{4}{10}$. LAYER 2 THE SOIL IS A SOFT CLAY X AT THE TOP OF THE LAYER = 234.00 IN
X AT THE BOTTOM OF THE LAYER = 300.00 IN
MODULUS OF SUBGRADE REACTION = .500E+02 LBS/IN**3 k = 50 #/in.3 LAYER 3 THE SOIL IS A STIFF CLAY WITH NO FREE WATER
X AT THE TOP OF THE LAYER = 300.0
X AT THE BOTTOM OF THE LAYER = 600.0
MODULUS OF SUBGRADE REACTION = .100E+0 300.00 IN 600.00 IN .100E+04 LBS/IN**3 $k = 1,000 \pm 1$ in 3 DISTRIBUTION OF EFFECTIVE UNIT WEIGHT WITH DEPTH 6 POINTS X,IN WEIGHT, LBS/IN**3 40E-01 12.00 234.00 .40E-01 234.00 .40E-01 .40E-01 300.00 300.00 .40E-01 600.00 .40E-01 DISTRIBUTION OF STRENGTH PARAMETERS WITH DEPTH 6 POINTS C,LBS/IN**2 PHI,DEGREES E50 .870E+01 (.250 #/t².000 .100E-01 .870E+01 .000 .100E-01 .350E+01 500 #/t².000 .200E-01 .350E+01 .000 .200E-01 .500E+02 .000 .400E-02 X,IN 12.00 234.00 234.00 300.00 300.00 .500E+02 .000 .400E-02 600.00 .500E+02 .000 .400E-02 BOUNDARY AND LOADING CONDITIONS -------LOADING NUMBER BOUNDARY-CONDITION CODE 7,000 # 500,000 ft-lls. LATERAL LOAD AT THE PILE HEAD = .700E+04 LBS

MOMENT AT THE PILE HEAD = .600E+07 IN-LBS

AXIAL LOAD AT THE PILE HEAD = .500E+04 LBS FINITE-DIFFERENCE PARAMETERS NUMBER OF PILE INCREMENTS 100 DEFLECTION TOLERANCE ON DETERMINATION OF CLOSURE = .100E-04 IN MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR PILE ANALYSIS = 100 MAXIMUM ALLOWABLE DEFLECTION .10E+03 IN

OUTPUT CODES

KOUTPT = 0 KPYOP = 0INC = 1

OUTPUT INFORMATION

LOADING NUMBER 1

BOUNDARY CONDITION CODE = 1
LATERAL LOAD AT THE PILE HEAD = .700E+04 LBS

MOMENT AT THE PILE HEAD = .600E+07 IN-LBS

AXIAL LOAD AT THE PILE HEAD = .500E+04 LBS

OUTPUT VERIFICATION

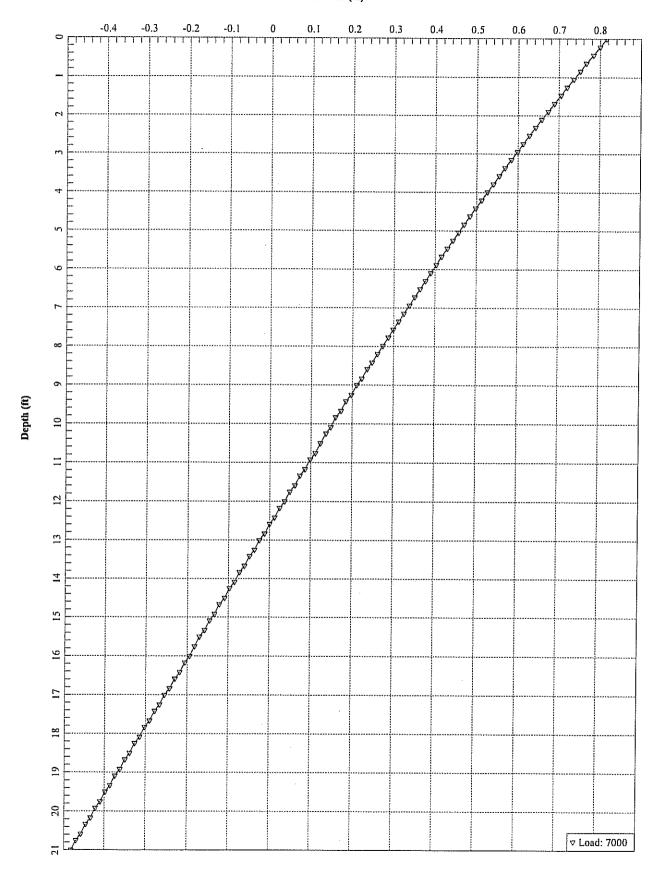
THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = .196E-03 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = -.401E-04 LBS

S U M M A R Y T A B L E

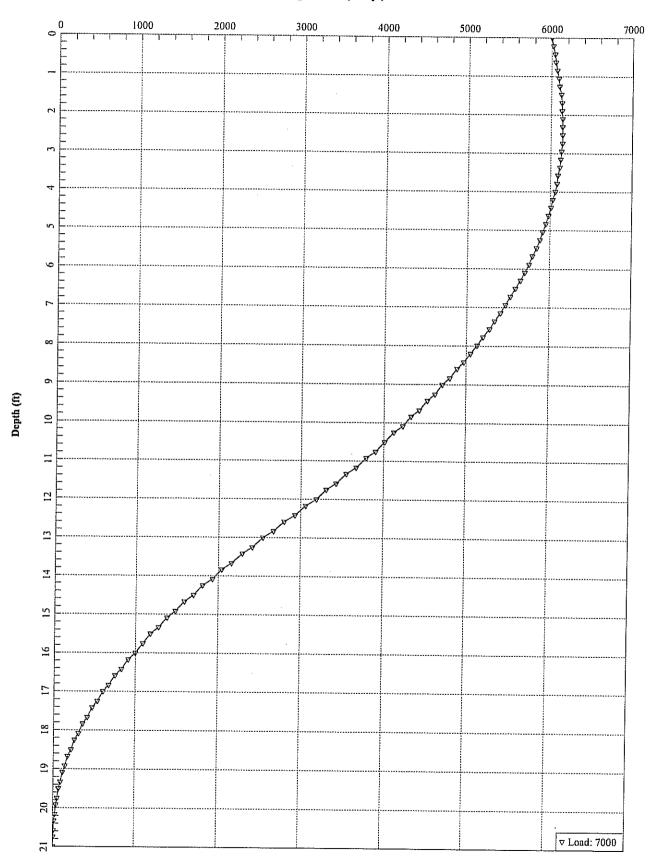
BOUNDARY	BOUNDARY	AXIAL	PILE HEAD	MAX.	MAX.
CONDITION	CONDITION	LOAD	DEFLECTION	MOMENT	SHEAR
BC1	BC2	LBS	IN	IN-LBS	LBS
.7000E+04	.6000E+07	.5000E+04	.8159E+00	.6140E+07	5187E+05

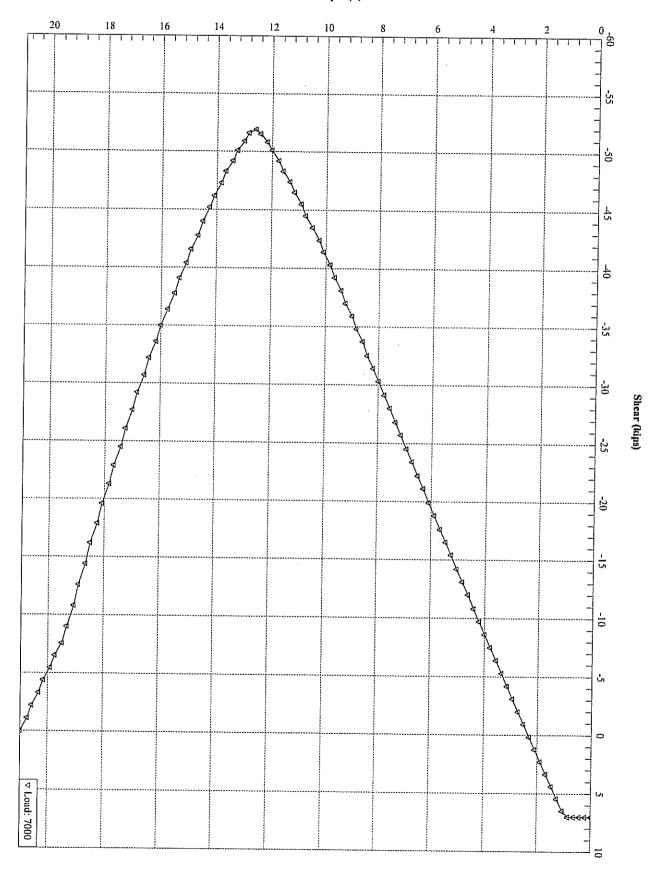
**** WARNING ****

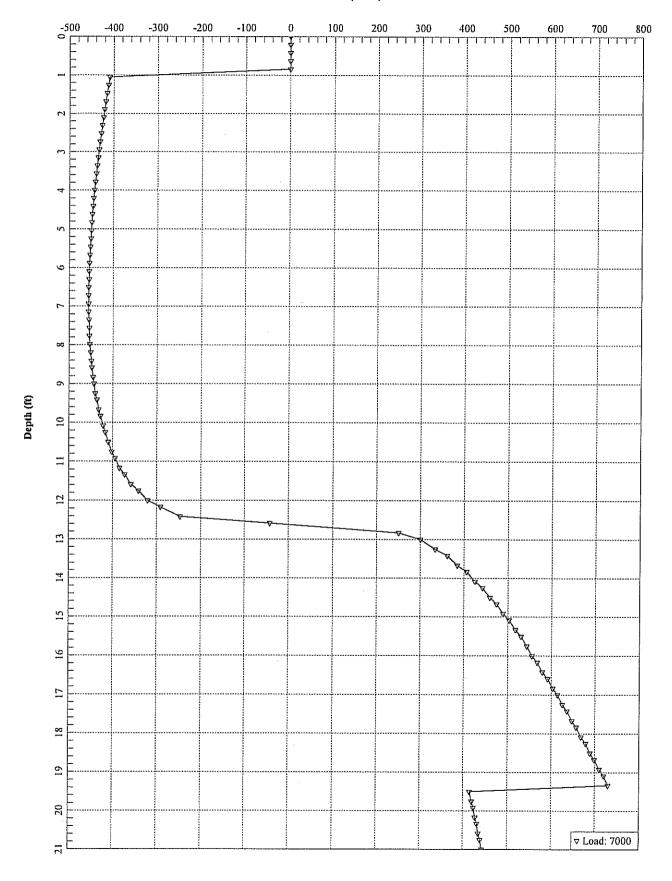
THE DEFLECTION AT THE PILE HEAD .100E+03 IS LARGER THAN THE ALLOWABLE DEFLECTION .100E+03

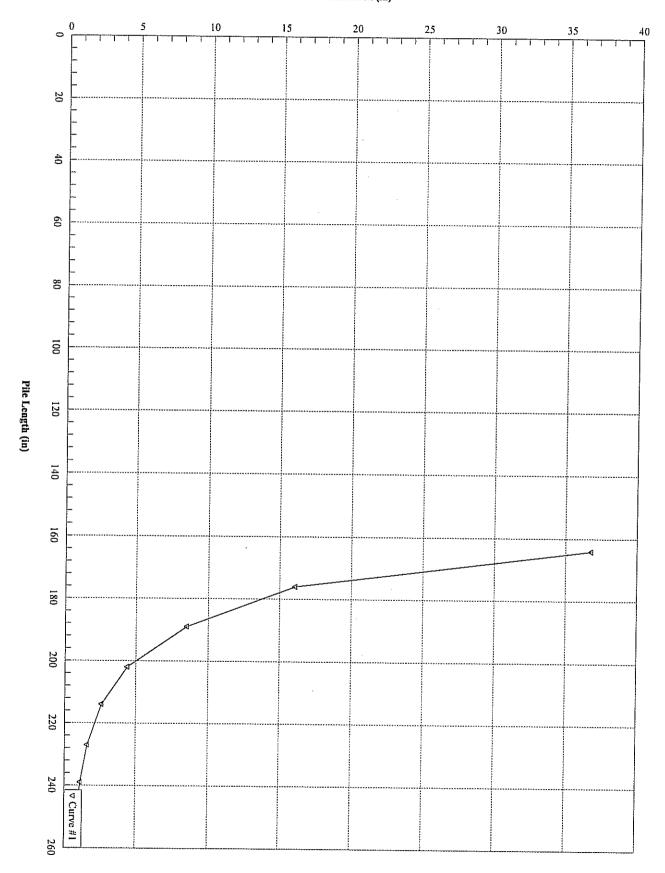

**** WARNING ****

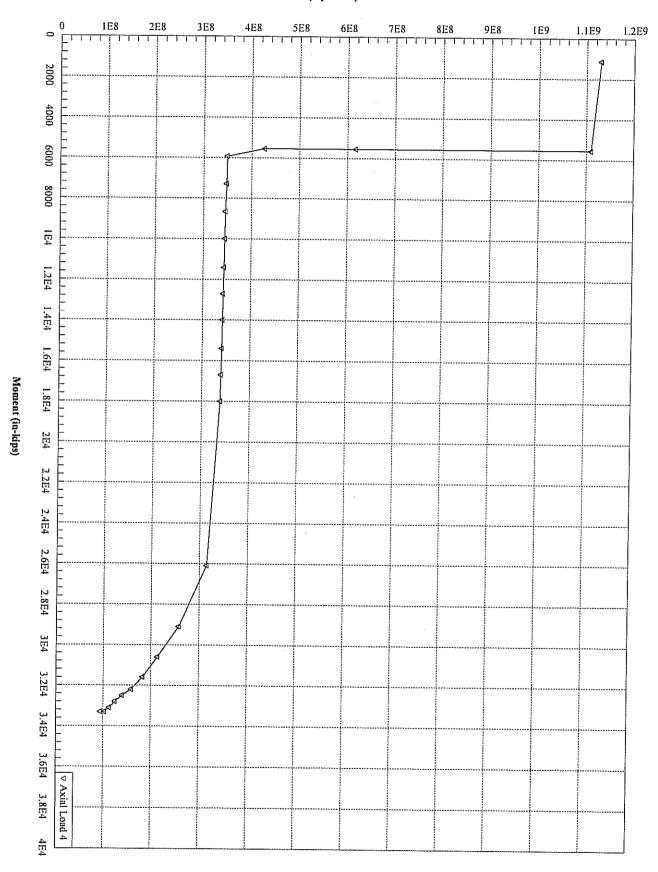
THE DEFLECTION AT THE PILE HEAD .103E+03 IS LARGER THAN THE ALLOWABLE DEFLECTION .100E+03


DEFLECTION VS PILE LENGTH


BOUNDARY CONDITION BC1 .7000E+04	BOUNDARY CONDITION BC2 .6000E+07	PILE LENGTH IN .2520E+03	PILE HEAD DEFLECTION IN .8159E+00	MAX. MOMENT IN-LBS .6140E+07	MAX. SHEAR LBS
17 000E10-1	.0000L+07	. Z J Z U E + U J	0T3AF+00	.0140E+0/	5187E+05


		Τ.	-69-1L-20.1po		
.7000E+04	.6000E+07	.2394E+03	.1122E+01	.6148E+07	5400E+05
.7000E+04	.6000E+07	.2268E+03	.1606E+01	.6139E+07	5618E+05
.7000E+04	.6000E+07	.2142E+03	.2610E+01	.6129F+07	5916F+05
.7000E+04	.6000E+07	.2016E+03	4408E+01	.6121F+07	6259E+05
.7000E+04	.6000E+07	.1890E+03	.8537E+01	.6128E+07	6742E+05
.7000E+04	.6000E+07	.1764E+03	.1608E+02	.6124E+07	7243E+05
.7000E+04	6000E+07	.1638E+03	.3681E+02	.6146E+07	8041E+05
	- 0000 = 107		•	• 0170670/	00476403




Bending Moment (in-kips)

I-69-TL-21. Tpo

Licensed to: Tom Struewing

ATC Associates Inc.

High Mast Light Station 1589+00 Line "A"

LATERALLY LOADED PILE ANALYSIS PROGRAM LPILE plus
PC VERSION 3.0 (C) COPYRIGHT ENSOFT, INC. 1997
THE PROGRAM WAS COMPILED USING MICROSOFT FORTRAN COMPILER,
(C) COPYRIGHT MICROSOFT CORPORATION

I-69 Light TL-21

27 ft long

ULTIMATE BENDING RESISTANCE AND FLEXURAL RIGIDITY

DIAMETER = 48.00 IN

CONCRETE COMPRESSIVE STRENGTH = 4.000000 KIP/IN**2

REBAR YIELD STRENGTH = 60.000000 KIP/IN**2

MODULUS OF ELASTICITY OF STEEL = 29000.000000 KIP/IN**2

NUMBER OF REINFORCING BARS = 20 1

AREA OF ONE REBAR = .156E+01 IN**2 N_0 . 11

NUMBER OF ROWS OF REINFORCING BARS = 11

COVER THICKNESS = 4.000 IN

SQUASH LOAD CAPACITY = 7918.42 KIP

ROW NUMBER	AREA OF REINFORCEMENT IN**2	DISTANCE TO CENTROIDAL AXIS IN
1 2 3 4 5 6 7 8 9 10 11	1.560000 3.120000 3.120000 3.120000 3.120000 3.120000 3.120000 3.120000 3.120000 3.120000	20.0000 19.0211 16.1804 11.7557 6.1804 .0000 -6.1804 -11.7557 -16.1804 -19.0211 -20.0000

OUTPUT RESULTS FOR AN AXIAL LOAD = 4.00 KIP

MOMENT	EI	PHI	MAX STR	N AXIS
IN-KIP	KIP-IN**2	1/IN	IN/IN	IN
.113E+04 .555E+04	.11269E+10 .11103E+10	.000001	.00002	24.623 24.185

I-69-TL-21.1po .555E+04 .61684E+09 .000009 .00013 14.327 .555E+04 .42704E+09 .000013 .00019 14.303 .593E+04 .34899E+09 .000017 .00024 14,307 .730E+04 .34767E+09 .000021 .00030 14.323 .866E+04 .34649E+09 .000025 .00036 14.346 .100E+05 .34537E+09 .000029 .00042 14.372 .114E+05 .34427E+09 .000033 .00048 14.400 .34328E+09 .34225E+09 .34122E+09 .127E+05 .000037 .00053 14.410 .140E+05 .000041 .00059 14.441 .154E+05 .000045 .00065 14.474 .167E+05 .34019E+09 .000049 .00071 14.508 .180E+05 .33917E+09 .000053 .00077 14.543 .261E+05 .31500E+09 .000083 .00121 14.559 .25770E+09 .291E+05 .000113 .00157 13.877 .306E+05 .21431E+09 .000143 .00190 13.272 .316E+05 .18278E+09 .000173 .00222 12.806 .322E+05 .15854E+09 .000203 .00252 12.424 .325E+05 .13956E+09 .000233 .00281 12.079 .328E+05 .12489E+09 .000263 .00312 11.867 .331E+05 .11293E+09 .000293 .00343 11.695 .333E+05 10304E+09 .000323 .00375 11.596 .333E+05 .94371E+08 .000353 .00406 11.500

THE ULTIMATE BENDING MOMENT AT A CONCRETE STRAIN OF 0.003 IS: .327E+05 IN-KIP 32,700 in-kips

PROGRAM LPILE plus Version 3.0 (C) COPYRIGHT 1997 ENSOFT, INC. ALL RIGHTS RESERVED

I-69 Light TL-21

UNITS--ENGLISH UNITS

INPUT INFORMATION *****

THE LOADING IS CYCLIC NO. OF CYCLES = .10E+05

PILE GEOMETRY AND PROPERTIES

48,000

PILE LENGTH 324.00 IN 2 POINTS DIAMETER MOMENT OF AREA MODULUS OF INERTIA ELASTICITY ΙN IN**4 IN**2 LBS/IN**2 .00 48.000 .261E+06 .181E+04 .310E+07 324.00

.261E+06

SOILS INFORMATION -----

.181E+04

.310E+07

I-69-TL-21.1po

X AT THE GROUND SURFACE = 12.00 IN

SLOPE ANGLE AT THE GROUND SURFACE = .00 DEG.

4 LAYER(S) OF SOIL

LAYER 1 THE SOIL IS A STIFF CLAY WITH NO FREE WATER
X AT THE TOP OF THE LAYER = 12.00 IN
X AT THE BOTTOM OF THE LAYER = 144.00 IN

X AT THE BOTTOM OF THE LAYER = 144.00 IN MODULUS OF SUBGRADE REACTION = .100E+03 LBS/IN**3 K= 100 tf/in 3

THE SOIL IS A SOFT CLAY

X AT THE TOP OF THE LAYER = 144.00 IN
X AT THE BOTTOM OF THE LAYER = 240.00 IN
MODULUS OF SUBGRADE REACTION = .300E+02 LBS/IN**3 (= 350)

LAYER 3

THE SOIL IS A STIFF CLAY WITH NO FREE WATER

X AT THE TOP OF THE LAYER = 240.00 IN

X AT THE BOTTOM OF THE LAYER = 264.00 IN

MODULUS OF SUBGRADE REACTION = .100E+03 LBS/IN**3 K= 100 #/ex3

LAYER 4

THE SOIL IS A SOFT CLAY

X AT THE TOP OF THE LAYER = 264.00 IN
X AT THE BOTTOM OF THE LAYER = 440.00 IN
MODULUS OF SUBGRADE REACTION = .300E+02 LBS/IN**3 \(\) = 30 #/\(\) \(\)

DISTRIBUTION OF EFFECTIVE UNIT WEIGHT WITH DEPTH

2 POINTS

WEIGHT, LBS/IN**3 .40E-01 X,IN

12.00 440.00 .40E-01

DISTRIBUTION OF STRENGTH PARAMETERS WITH DEPTH 8 POINTS

X,IN	C,LBS/IN**2 , PHI,DEGREES	E50
12.00	C,LBS/IN**2 PHI,DEGREES .950E+01 1,400 #/k².000	.100E-01
144.00	.950E+01 € 50 = 162000	.100E-01
144.00	.950E+01 1,400 = 1,000 .950E+01 2,50 = 1,000 .180E+01 .000	.200E-01
240.00	.180F+01 , 000	.200E-01
240.00	.850E+01 1,250 1/27-000	.100E-01
264.00	.850E+01 .000	.100E-01
264.00	.180E+01 ,,_,000	.200E-01
440.00	.180E+01 250 4/62:000	.200E-01
	/ #~	

BOUNDARY AND LOADING CONDITIONS

LOADING NUMBER

BOUNDARY-CONDITION CODE LATERAL LOAD AT THE PILE HEAD = .700E+04 LBS MOMENT AT THE PILE HEAD = .600E+07 IN-LBS AXIAL LOAD AT THE PILE HEAD = .500E + 04 LBS

FINITE-DIFFERENCE PARAMETERS NUMBER OF PILE INCREMENTS

===

I-69-TL-21.1po

DEFLECTION TOLERANCE ON DETERMINATION OF CLOSURE = .100E-04 IN MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR PILE ANALYSIS = 100 MAXIMUM ALLOWABLE DEFLECTION = .10E+03 IN

OUTPUT CODES

KOUTPT = 0 KPYOP = 0INC = 1

OUTPUT INFORMATION

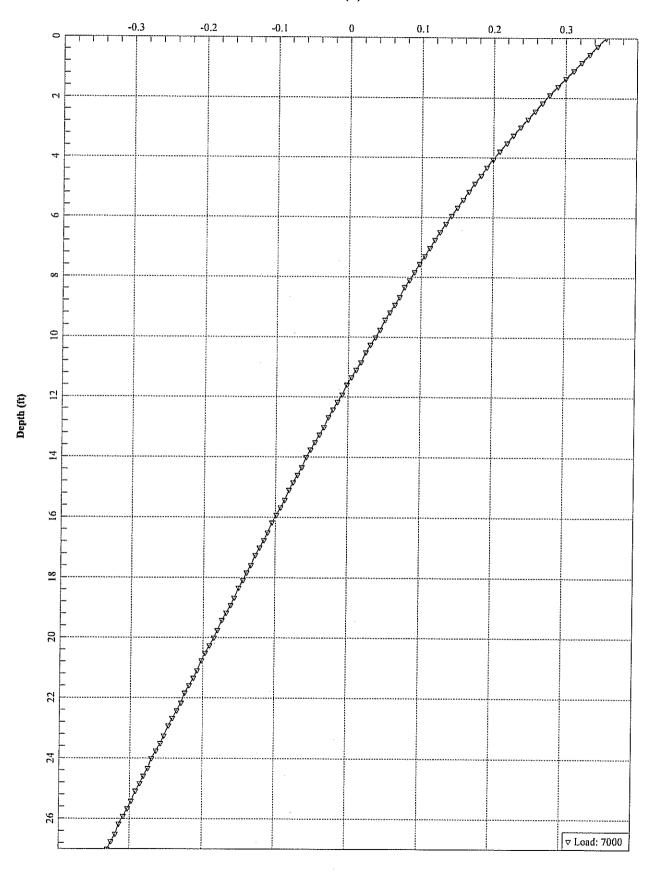
LOADING NUMBER 1

BOUNDARY CONDITION CODE = 1
LATERAL LOAD AT THE PILE HEAD = .700E+04 LBS
MOMENT AT THE PILE HEAD = .500E+07 IN-LBS
AXIAL LOAD AT THE PILE HEAD = .500E+04 LBS

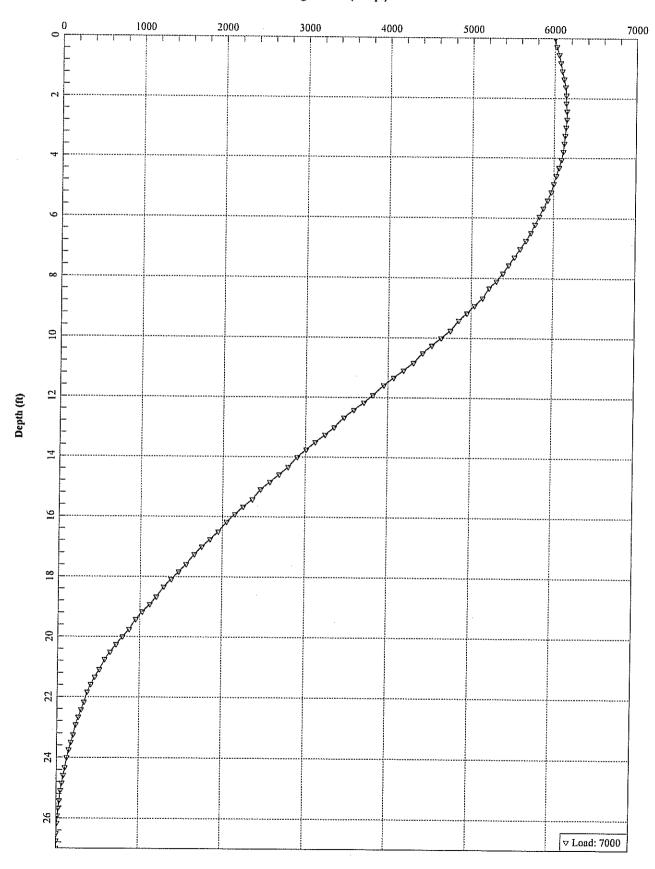
OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT = -.541E-04 IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT = .900E-05 LBS

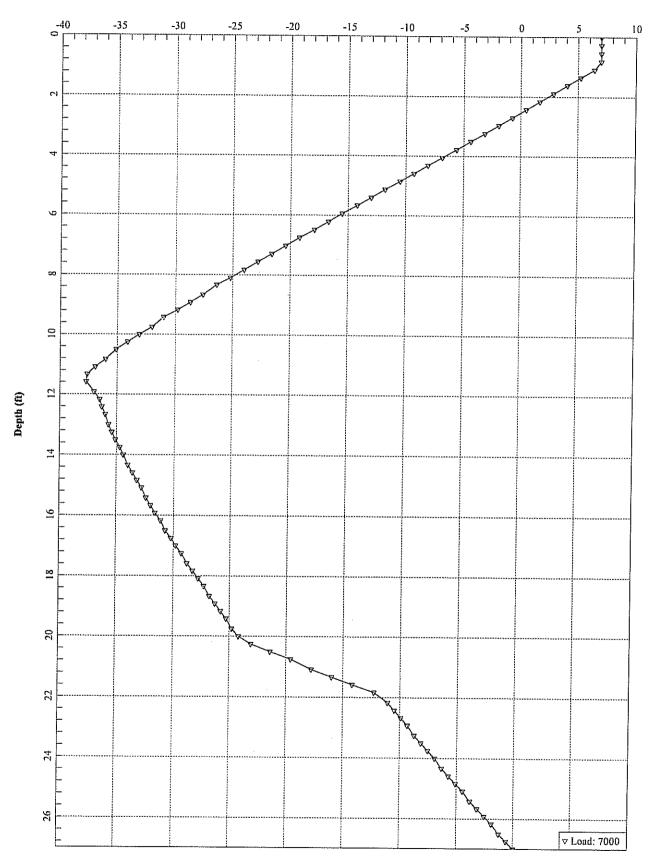
S U M M A R Y T A B L E

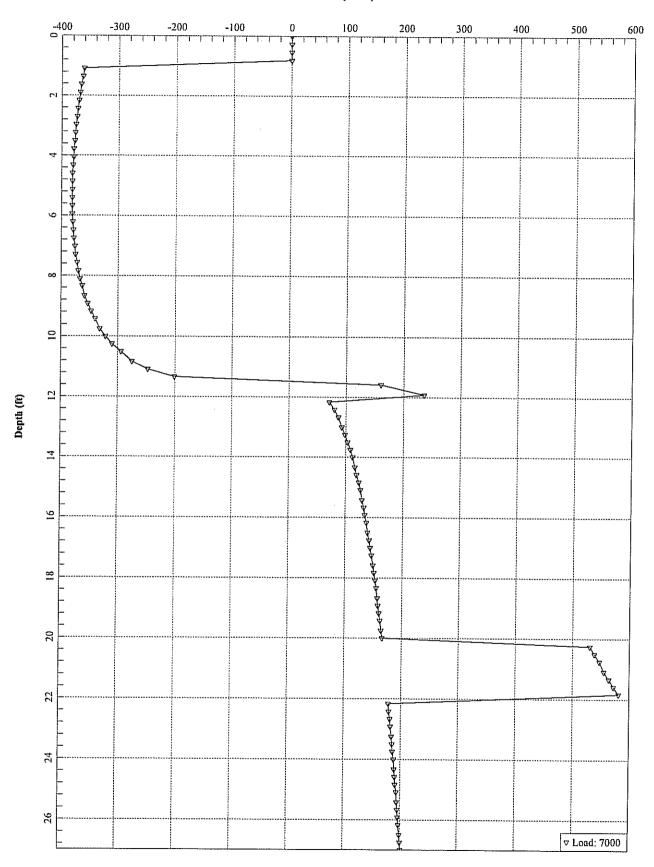

BOUNDARY	BOUNDARY	AXIAL	PILE HEAD	MAX.	MAX.
CONDITION	CONDITION	LOAD	DEFLECTION	MOMENT	SHEAR
BC1	BC2	LBS	IN	IN-LBS	LBS
.7000E+04	.6000E+07	.5000E+04	.3561E+00	.6147E+07	3766E+05
.,0001	.0000L+01	. JUUULTU4	* 220TE+00	.O14/E+U/	3/00E+U5

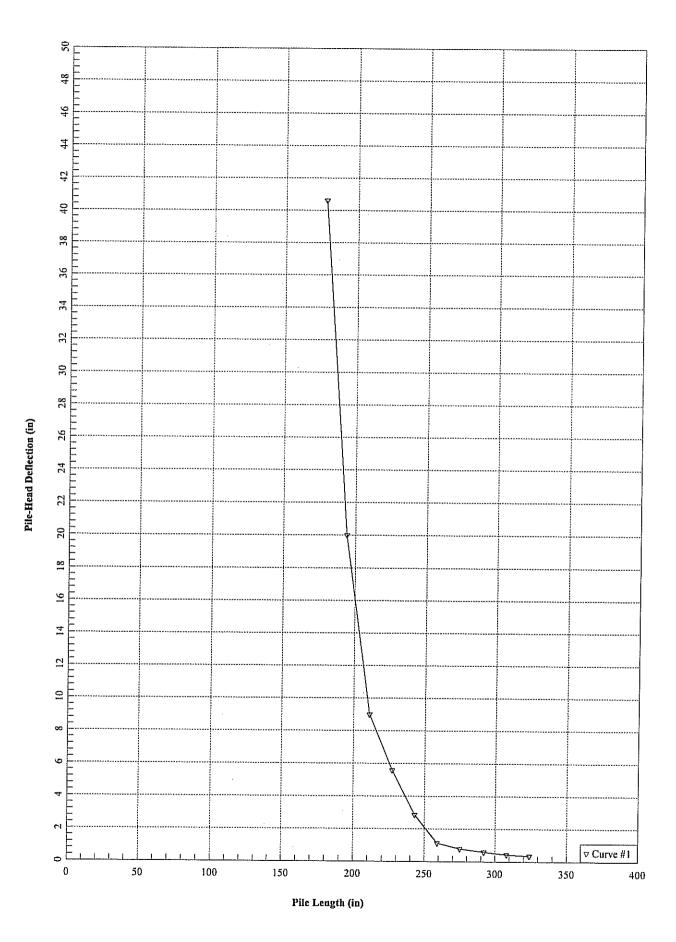
DEFLECTION VS PILE LENGTH


BC1 .7000E+04 .7000E+04 .7000E+04 .7000E+04	BOUNDARY CONDITION BC2 .6000E+07 .6000E+07 .6000E+07 .6000E+07	PILE LENGTH IN .3240E+03 .3078E+03 .2916E+03 .2754E+03 .2592E+03	PILE HEAD DEFLECTION IN .3561E+00 .4284E+00 .5914E+00 .7832E+00 .1132E+01	MAX. MOMENT IN-LBS .6147E+07 .6140E+07 .6152E+07 .6143E+07	MAX. SHEAR LBS 3766E+05 3923E+05 4151E+05 4363E+05
---	--	---	--	--	--

.7000E+04 .7000E+04 .7000E+04 .7000E+04 .7000E+04	.6000E+07 .6000E+07 .6000E+07 .6000E+07	.2430E+03 .2268E+03 .2106E+03 .1944E+03 .1782E+03	-69-TL-21.1po .2862E+01 .5586E+01 .8989E+01 .2004E+02 .4055E+02	.6120E+07 .6127E+07 .6120E+07 .6134E+07	5417E+05 6042E+05 6564E+05 7426E+05 8293E+05
	.0000107	• 11 OF ETUJ	• 403JE+UZ	.O147F+U/	0293E+0






Bending Moment (in-kips)

APPENDIX J

SPECIAL PROVISIONS

THE INDIANA DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISIONS

FOR

WICK DRAINS

Description:

This work shall consist of furnishing all necessary labor, equipment, and materials and performing all operations required for installation of prefabricated wick drains in accordance with the details shown on the plans and with the requirements of these specifications.

Material Requirements:

Prefabricated wick drains shall consist of a band-shaped plastic core which permits continuous vertical drainage, wrapped in a filter material and installed in the subsoils by displacement methods. Prefabricated wick drains acceptable for installation shall be the products known as Alidrain, Geodrain with polyester/cellulose filter, Mebradrain or Amerdrain or approved equal.

At least two weeks prior to construction, the Contractor shall submit documentation indicating the source of the drain materials. Prior to delivery of he materials to the site, the Contractor shall present the Engineer with a vendor's purchase certificate for verification and a type "C" Certification.

Equipment:

Prefabricated drains shall be installed with approved modern equipment of a type which will cause a minimum of disturbance of the soil during the installation operation.

Each prefabricated drain shall be installed using a mandrel (or sleeve) which shall be advanced through the sand blanket and underlying soil.

The mandrel shall protect the drain from tears, cuts and abrasions during installation, and shall be retracted after each drain is installed. The mandrel shall be provided with an "anchor" rod or plate at the bottom to prevent the soils from entering the bottom of the mandrel during installation of the drain and to anchor the bottom of the drain at the required depth at the time of mandrel removal. The mandrel shall have a maximum cross sectional area of ten square inches. To minimize disturbance to the soil, the mandrel shall not be intruded into the soil using vibratory or impact methods.

At least two weeks prior to construction, the Contractor shall submit in writing to the Engineer for his review and approval, details of the sequence and method of installation. Approval by the Engineer will not relieve the Contractor of his responsibility to install the prefabricated drains in accordance with these specifications and manufacturer's recommendations.

Construction Methods:

Prior to installation of prefabricated drains within the areas designated on the plans, the Contractor shall demonstrate that his equipment, method, and materials produce a satisfactory drain installation in accordance with these specifications. For this purpose, the Contractor will be required to install up to ten trial drains in each test location as designated by the Engineer. The Contractor will be compensated for each trial drain if the installation satisfies the requirements of this specification. No compensation will be allowed for installing unsatisfactory trial drains.

Approval by the Engineer of the method and equipment used to install the trial drains shall not constitute, necessarily, acceptance of the method if the method of installation does not produce a drain which satisfies the project requirements. The Contractor shall alter his method and/or equipment as necessary to comply with these specifications.

The drains which do not require predrilling shall be installed following placement of the sand blanket as shown on the plans. The drains shall be installed to a depth corresponding to the bottom of the compressible layer shown on the drawings, or to such a depth where the soil resists further penetration under maximum effort of the installation equipment. The Engineer may vary the depths, spacing or the number of drains to be installed, and may revise the plan limits for this work as necessary.

The contractor shall be permitted to use augering or other methods to predrill or to loosen stiff upper soils prior to placement of the sand blanket. Placement of this sand blanket in areas where predrilling is required will follow placement of the wick drains.

The installation equipment shall be carefully checked for plumbness prior to advancing each drain. The plumbness of the mandrel shall not deviate more that one-eight $\binom{1}{8}$ inch per foot from the vertical.

Drains that vary from their proper location by more than three inches or drains that are damaged during installation or subsequent construction, or drains that are improperly completed shall be rejected by the Engineer, and no compensation will be allowed for any materials furnished or for any work performed on such drains.

During installation, the Contractor shall provide the Engineer with suitable means of measuring the vertical length of prefabricated drain installed at a given location and deriving a tip elevation for each drain.

After installation, the Contractor shall cut each drain such that approximately six inches of drain material extends above the top of the sand blanket. The drain material shall be cut neatly at its upper end.

Prefabricated drains will be located, numbered, and staked out by the Contractor. The Contractor shall take all reasonable precautions to preserve the stakes. The locations of the drains shall not vary by more than three inches from the locations indicated on the drawing or as directed by the Engineer. Two weeks prior to construction, the Contractor shall submit shop drawings to the Engineer for his approval showing the method of field location, drain layout and numbering plan.

Where obstructions are encountered below the working surface which cannot be penetrated by the drain installation equipment, the Contractor shall complete the drain from the elevation of the obstruction to the working surface and notify the Engineer. At the direction of the Engineer, the Contractor shall attempt to install a new drain within an eighteen inch radius from the obstructed drain. A maximum of two additional attempts shall be made as directed by the Engineer. The Contractor will be compensated for each obstructed drain unless the drain is otherwise improperly installed, in which case no compensation will be allowed.

Documentation:

The Engineer shall keep a daily log which lists for each drain the date of installation, the top elevation, tip elevation, and pay length. A copy of each daily log shall be provided to the Contractor for his records.

Method of Measurement:

The quantity to be paid for under this item shall be the number of linear feet or linear meter of drain installed and accepted, computed from the top of the sand blanket to the tip elevation of the drains. In case of obstructions, the Contractor will be paid at the contract price for the number of linear feet or linear meter of drain measured from the top of the drainage blanket to the elevation at which the obstruction was encountered.

Basis of Payment:

The unit bid price per linear foot or linear meter for the item, "Wick Drain", shall include the cost of furnishing all tools, materials, labor and equipment necessary to complete the work in accordance with the Plans and Specifications. No payment shall be made for unacceptable drains, unacceptable trial drains, or delays or expenses incurred by the Contractor, through changes necessitated by improper or unacceptable material or equipment.